The analyzing power AN of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5 × 10−3 to 5.0 × 10−2 (GeV/c)2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed.
No description provided.
The reaction γ+d → π++π−+p + n has been measured in a kinematically complete way at incident photon energies from 570 to 850 MeV in steps of 40 MeV. From detailed comparison of measured data with results of event simulations, it is concluded that three different mechanisms, the quasi-free, double-delta and phase space productions, contribute to the reaction. Each of the cross sections corresponding to these mechanisms is determined separately.
SYSTEMATIC ERRORS ARE NOT INCLUDED.
SYSTEMATIC ERRORS ARE NOT INCLUDED.
The subthreshold production of neutral pions was studied in the reactions 24 Mg(α,π 0 )X at 43 MeV·. A and 24 Mg( 16 O,π 0 )X at 24 and 33 MeV·. A . The energies and emission angles of the two coincident photons from the π 0 -decay were measured with a lead glass shower detector. The cross sections of 3.5 and 6.6 nb from the 16 O-induced reactions are compatible with other experiments in this energy region. For the α-induced reaction a production cross section of 1.3 nb was found. Here, only 22 MeV above the absolute threshold, the pion emission from an excited Δ -nucleon hole state is strongly suppressed. The differential cross sections at very backward angles are by an order of magnitude bigger than the yields at 90° pointing to a strong absorption of the produced pions by the larger target nucleus.
No description provided.
The differential cross section for the reaction H2(γ,p)n has been measured at several center-of-mass angles ranging from 50° to 143° for photon energies between 0.8 and 1.8 GeV. The experiment was performed at the SLAC-NPAS facility with the use of the 1.6 GeV/c spectrometer to detect the high energy protons produced by a bremsstrahlung beam directed at a liquid deuterium target. Contributions from concurrent disintegration by the residual electron beam were determined by measuring the proton yield without the Cu photon radiator. At angles not very far from 90°, the energy dependence of the cross sections is consistent with predictions of scaling using counting rules for constituent quarks. At least one theoretical calculation based on a meson-baryon picture of the reaction is able to reproduce the magnitude and energy dependence of the 90° cross section. The angular distribution exhibits a large enhancement at backward angles at the higher energies.
THE QUOTED ERRORS ARE STATISTICAL ONLY.
The results of intranuclear cascade calculations (ideal gas with two-body collisions and no mean field), complemented by a simple percolation procedure, are compared with experimental data on protons and light nuclear fragments (d, t, He3, and He4) measured in 400 and 800 MeV/nucleon Ne+Nb collisions using a large solid angle detector. The model reproduces quite well global experimental observables like nuclear fragment multiplicity distributions or production cross sections, and nuclear fragment to proton ratios. For rapidity distributions the best agreement occurs for peripheral reactions. Transverse momentum analysis confirms once again that the cascade, although being a microscopic approach, gives too small a collective flow, the best agreement being reached for Z=2 nuclear fragments. Nevertheless these comparisons are encouraging for further improvements of the model. Moreover, such an approach is easy to extend to any other models that could calculate the nucleon phase space distribution after the compression stage of the reaction, when light nuclear fragments emitted at large angles are constructed from percolation.
No description provided.
No description provided.
The fragmentation of 1.2 GeV per nucleon La139 nuclei has been studied. Total charge changing cross sections for H (CH2-C), C, and Pb target nuclei, and elemental production cross sections for C and CH2 targets for 1≤ΔZ≤30 have been measured. For heavy projectile fragments, the projected transverse momenta extracted are generally larger than predicted by models based on the internal momenta of nucleons in nuclei. Fits to the heavy fragment momentum distributions yield additional transverse momenta or ‘‘bounce-off’’ which range from ≃500 to 1000 MeV/c.
No description provided.
The H2(e,e’n)1H quasielastic cross section was measured at Q2 values of 0.109, 0.176, and 0.255 (GeV/c)2. The neutron detection efficiency was determined by the associated particle technique with the H2(γ,pn) reaction for each of the three neutron kinetic energies. These H2(e,e’n) measurements of the coincidence cross sections are the first at low Q2. The cross sections are sensitive primarily to the neutron magnetic form factor GMn at these kinematics. The extracted GMn values have smaller uncertainties than previous data and are consistent with the dipole parametrization at the two higher momentum transfers; at the lowest momentum transfer, the value of GMn is ∼10% higher than the dipole value.
No description provided.
Energy spectra of protons, deuterons and tritons from stopped-antiproton annihilation in Li, Si, Ca, Ni, Ge, Mo, Ho, Yb, Pb and Th have been measured with a Ge detector telescope. The shapes of these and of previously obtained spectra and the corresponding yields were analysed and compared with statistical calculations including intranuclear cascade, coalescence, pre-equilibrium processes, evaporation, multifragmentation and Fermi break-up. The relative importance and the A -dependence of the various processes are elucidated.
No description provided.
No description provided.
No description provided.
Production of Λ, Λ , and K s 0 has been measured for a wide range of event multiplicity in S+Pb reactions at 200 GeV/c per nucleon. The production of Λ is shown to increase with multiplicity faster than expected from a superposition of p+p collisions. The effect is seen for low multiplicity (below 100 negative particles).
No description provided.
No description provided.
No description provided.
Data of the ηπ − system were obtained in the reaction π − p → ηπ − p at 6.3 GeV/ c beam momentum. About 17 k events of ηπ − were collected in the mass range 0.8 ⩽ M ηπ - ⩽ 1.8 GeV/ c 2 and in the range of the momentum transfer squared 0.075 ⩽ | t ′| ⩽ 0.60 (GeV/ c ) 2 . A large forward-backward asymmetry was observed around 1.3 GeV/ c 2 in the Gottfried-Jackson frame of the ηπ − system. A partial wave analysis of the data was performed. A peak of the D + wave attributed to a 2 (1320) is clearly seen. An enhancement is observed around 1.3 GeV/ c 2 in the P + wave.
No description provided.
No description provided.