We present STAR measurements of azimuthal anisotropy by means of the two- and four-particle cumulants $v_2$ ($v_2\{2\}$ and $v_2\{4\}$) for Au+Au and Cu+Cu collisions at center of mass energies $\sqrt{s_{_{\mathrm{NN}}}} = 62.4$ and 200 GeV. The difference between $v_2\{2\}^2$ and $v_2\{4\}^2$ is related to $v_{2}$ fluctuations ($\sigma_{v_2}$) and nonflow $(\delta_{2})$. We present an upper limit to $\sigma_{v_2}/v_{2}$. Following the assumption that eccentricity fluctuations $\sigma_{\epsilon}$ dominate $v_2$ fluctuations $\frac{\sigma_{v_2}}{v_2} \approx \frac{\sigma_{\epsilon}}{\epsilon}$ we deduce the nonflow implied for several models of eccentricity fluctuations that would be required for consistency with $v_2\{2\}$ and $v_2\{4\}$. We also present results on the ratio of $v_2$ to eccentricity.
The two-particle cumulant $v_2\{2\}^2$ for Au+Au collisions at 200 and 62.4 GeV. Results are shown with like-sign combinations (LS) and charge-independent results (CI) for $0.15 < p_T < 2.0$ GeV/$c$.
The same as the left but for Cu+Cu collisions. The systematic errors are shown as thin lines with wide caps at the ends and statistical errors are shown as thick lines with small caps at the end. Statistical and systematic errors are very small.
The difference of charge-independent (CI) v2{2} and like-sign (LS) $v_2\{2\}$ for Au+Au and Cu+Cu collisions at 200 (top panel) and 62.4 (bottom panel) GeV vs. the log of $\langle dN_{ch}/d\eta\rangle$.The statistical errors are smaller than the marker size and not visible for most of the data.
Vector mesons may be photoproduced in relativistic heavy-ion collisions when a virtual photon emitted by one nucleus scatters from the other nucleus, emerging as a vector meson. The STAR Collaboration has previously presented measurements of coherent $\rho^0$ photoproduction at center of mass energies of 130 GeV and 200 GeV in AuAu collisions. Here, we present a measurement of the cross section at 62.4 GeV; we find that the cross section for coherent $\rho^0$ photoproduction with nuclear breakup is $10.5\pm1.5\pm 1.6$ mb at 62.4 GeV. The cross-section ratio between 200 GeV and 62.4 GeV is $2.8\pm0.6$, less than is predicted by most theoretical models. It is, however, proportionally much larger than the previously observed $15\pm 55$% increase between 130 GeV and 200 GeV.
Acceptance corrected invariant mass distributions for the coherently produced $\rho^0$ candidates collected with trigger A (left) and B (right). The fit function (solid) encompasses the Breit-Wigner (dashed), the mass independent contribution from direct $\pi^+\pi^-$ production (dash-dotted), and the interference term (dotted). The hatched area is the contribution from the combinatorial background. The statistical errors are shown.
Acceptance corrected invariant mass distributions for the coherently produced $\rho^0$ candidates collected with trigger A (left) and B (right). The fit function (solid) encompasses the Breit-Wigner (dashed), the mass independent contribution from direct $\pi^+\pi^-$ production (dash-dotted), and the interference term (dotted). The hatched area is the contribution from the combinatorial background. The statistical errors are shown.
Transverse momentum distribution of the $\rho^0$ candidates (open distribution) overlaid by the combinatorial background estimated with like-sign pairs (not corrected to the acceptance and reconstruction efficiency) and scaled to match in the high transverse momentum region, $p_T$ ≥ 250 MeV/$c$ (hatched distribution). The plot is based on the dataset collected with trigger B.
We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at $\sqrt{s_{NN}} = 200$ GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, $\eta/s$, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of $\eta/s$ that suggests that the produced medium has a small viscosity per unit entropy.
The correlation function C, C is plotted in units of (GeV/c)$^2$ and the relative azimuthal angle ∆φ in radians for 70-80% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Relative statistical errors range from 0.8% in peripheral collisions to 0.9% in the most central collisions at the peak of the distribution.
The correlation function C, C is plotted in units of (GeV/c)$^2$ and the relative azimuthal angle ∆φ in radians for 30-40% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Relative statistical errors range from 0.8% in peripheral collisions to 0.9% in the most central collisions at the peak of the distribution.
The correlation function C, C is plotted in units of (GeV/c)$^2$ and the relative azimuthal angle ∆φ in radians for 0-5% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV..Relative statistical errors range from 0.8% in peripheral collisions to 0.9% in the most central collisions at the peak of the distribution.
We present the measurement of non-photonic electron production at high transverse momentum ($p_T > $ 2.5 GeV/$c$) in $p$ + $p$ collisions at $\sqrt{s}$ = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons ($\frac{e^++e^-}{2}$) at 3 GeV/$c < p_T <~$10 GeV/$c$ from bottom and charm meson decays to be ${d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0}$ = 4.0$\pm0.5$({\rm stat.})$\pm1.1$({\rm syst.}) nb and ${d\sigma_{D\to e} \over dy_e}|_{y_e=0}$ = 6.2$\pm0.7$({\rm stat.})$\pm1.5$({\rm syst.}) nb, respectively.
The electron pair invariant mass distributions for electrons at $2.5 < p_{T} < 3.0$ GeV/c
The electron pair invariant mass distributions for electrons at $8 < p_{T} < 10$ GeV/c
The simulated electron pair invariant mass distributions for electrons at $2.5 < p_{T} < 3$ GeV/c
We report the first measurement of the parity violating single-spin asymmetries for midrapidity decay positrons and electrons from $W^{+}$ and $W^{-}$ boson production in longitudinally polarized proton-proton collisions at $\sqrt{s}=500 $GeV by the STAR experiment at RHIC. The measured asymmetries, $A^{W^+}_{L}=-0.27\pm 0.10\/({\rm stat.})\pm 0.02\/({\rm syst.}) \pm 0.03\/({\rm norm.})$ and $A^{W^-}_{L}=0.14\pm 0.19\/({\rm stat.})\pm 0.02 \/({\rm syst.})\pm 0.01\/({\rm norm.})$, are consistent with theory predictions, which are large and of opposite sign. These predictions are based on polarized quark and antiquark distribution functions constrained by polarized DIS measurements.
$E^e_T$ for W+ (bottom) and W− (top) events showing the candidate histograms in black, the full background estimates in blue and the signal distributions in yellow.
$E^e_T$ for W+ (bottom) and W− (top) events showing the candidate histograms in black, the full background estimates in blue and the signal distributions in yellow.
Longitudinal single-spin asymmetry, AL, for W± events as a function of the leptonic pseudorapidity, $\eta_e$, for 25 < $E^e_T$ < 50 GeV in comparison to theory predictions
The contribution of $B$ meson decays to non-photonic electrons, which are mainly produced by the semi-leptonic decays of heavy flavor mesons, in $p+p$ collisions at $\sqrt{s} =$ 200 GeV has been measured using azimuthal correlations between non-photonic electrons and hadrons. The extracted $B$ decay contribution is approximately 50% at a transverse momentum of $p_{T} \geq 5$ GeV/$c$. These measurements constrain the nuclear modification factor for electrons from $B$ and $D$ meson decays. The result indicates that $B$ meson production in heavy ion collisions is also suppressed at high $p_{T}$.
Distributions of the azimuthal angle between nonphotonic electrons and charged hadrons normalized per nonphotonic electron trigger. The trigger electron has (top) $2.5 < p_{T} < 3.5$ GeV/$c$ and (bottom) $5.5 < p_{T} < 6.5$ GeV/$c$. The curves represent PYTHIA calculations for $D$ (dotted curve) and $B$ (dashed curve) decays. The fit result is shown as the black solid curve.
(a) Background-subtracted invariant mass distribution of $K$ pairs requiring at least one nonphotonic electron trigger in the event. The solid line is a Gaussian fit to the data near the peak region. (b) Distribution of the azimuthal angle between nonphotonic electron (positron) trigger particles and $D^{0}$ ($\bar{D}^{0}$). The solid (dashed) line is a fit of the correlation function from PYTHIA (MC$@$NLO) simulations to the data points.
Transverse momentum dependence of the relative contribution from $B$ mesons ($r_{B}$) to the nonphotonic electron yields. Error bars are statistical and brackets are systematic uncertainties. The solid curve is the FONLL calculation [14]. Theoretical uncertainties are indicated by the dashed curves.
Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons - composed of an antiproton, antineutron, and antilambda hyperon - produced by colliding gold nuclei at high energy. Our analysis yields 70 +- 17 antihypertritons and 157 +- 30 hypertritons. The measured yields of hypertriton (antihypertriton) and helium3 (antihelium3) are similar, suggesting an equilibrium in coordinate and momentum space populations of up, down, and strange quarks and antiquarks, unlike the pattern observed at lower collision energies. The production and properties of antinuclei, and nuclei containing strange quarks, have implications spanning nuclear/particle physics, astrophysics, and cosmology.
(A, B) show the invariant mass distribution of the daughter 3He + π. The open circles represent the signal candidate distributions, while the solid black lines are background distributions. The blue dashed lines are signal (Gaussian) plus background (double exponential) combined fit.
(A, B) show the invariant mass distribution of the daughter 3He + π. The open circles represent the signal candidate distributions, while the solid black lines are background distributions. The blue dashed lines are signal (Gaussian) plus background (double exponential) combined fit. A (B) shows the 3ΛH (3Λ¯H) candidate distributions.
The 3ΛH (solid squares) and Λ (open circles) yield distributions versus cτ. The solid lines represent the cτ fits. The inset depicts the $\chi^2$ distribution of the best 3ΛH cτ fit. The error bars represent the statistical uncertaintiesonly.
We report the first three-particle coincidence measurement in pseudorapidity ($\Delta\eta$) between a high transverse momentum ($p_{\perp}$) trigger particle and two lower $p_{\perp}$ associated particles within azimuth $\mid$$\Delta\phi$$\mid$$<$0.7 in $\sqrt{{\it s}_{NN}}$ = 200 GeV $d$+Au and Au+Au collisions. Charge ordering properties are exploited to separate the jet-like component and the ridge (long-range $\Delta\eta$ correlation). The results indicate that the particles from the ridge are uncorrelated in $\Delta\eta$ not only with the trigger particle but also between themselves event-by-event. In addition, the production of the ridge appears to be uncorrelated to the presence of the narrow jet-like component.
Correlated hadron distribution in ∆φ(|η|<1 with a high-p⊥trigger particle in 0-12% Au+Au collisions for 3<p(t)⊥<10 GeV/cand 1<p(a)⊥<3GeV/c. The ZYA1-normalized flow background is shown by the curve.
Correlated hadron distribution ∆η(|∆φ|<0.7) with a high-p⊥ trigger particle in 0-12% Au+Au collisions for 3<p(t)⊥<10 GeV/c and 1<p(a)⊥<3GeV/c. The ∆η distributions are background subtracted and corrected for ∆η acceptance and are for like and unlike-sign pairs separately. The curves in are Gaussian fits. Errors are statistical.
Background-subtracted charge-independent (AAT ) correlated hadron pair density in minimum bias d+Au collisions for 3<p(t)⊥<10 GeV/cand 1<p(a)⊥<3 GeV/c. The results are for near-side correlated hadrons within |∆φ1,2|<0.7, and corrected for the 3-particle ∆η-∆η acceptance. Statistical errors at (∆η1,∆η2)∼(0,0)are approximately 0.033 for d+Au respectively.
We study the beam-energy and system-size dependence of \phi meson production (using the hadronic decay mode \phi -- K+K-) by comparing the new results from Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the transverse momentum distributions for \phi mesons are observed to be similar in yield and shape for Cu+Cu and Au+Au colliding systems with similar average numbers of participating nucleons. The \phi meson yields in nucleus-nucleus collisions, normalised by the average number of participating nucleons, are found to be enhanced relative to those from p+p collisions with a different trend compared to strange baryons. The enhancement for \phi mesons is observed to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.
Midrapidity $(|y| < 0.5)$ transverse momentum spectra of $\phi$ mesons for various collision centrality classes for $Cu+Cu$ collisions at $\sqrt{s_{NN}}=62.4$ and 200 GeV. To study the system size dependence, comparison of $40-50\%$ $Au+Au$ spectra to $10-20\%$ $Cu+Cu$ spectra at 200 GeV, and $40-60\%$ $Au+Au$ spectra to $20-30\%$ $Cu+Cu$ spectra at 62.4 GeV are shown. These centralities for the two colliding systems have similar $\langle N_{\scriptsize{\mbox{part}}}\rangle$ values as outlined in Table 2. The errors represent the statistical and systematic errors added in quadrature. They are found to be within the symbol size. The spectra are fitted to a Levy function discussed in the text.
Midrapidity $(|y| < 0.5)$ transverse momentum spectra of $\phi$ mesons for various collision centrality classes for $Cu+Cu$ collisions at $\sqrt{s_{NN}}=62.4$ and 200 GeV. To study the system size dependence, comparison of $40-50\%$ $Au+Au$ spectra to $10-20\%$ $Cu+Cu$ spectra at 200 GeV, and $40-60\%$ $Au+Au$ spectra to $20-30\%$ $Cu+Cu$ spectra at 62.4 GeV are shown. These centralities for the two colliding systems have similar $\langle N_{\scriptsize{\mbox{part}}}\rangle$ values as outlined in Table 2. The errors represent the statistical and systematic errors added in quadrature. They are found to be within the symbol size. The spectra are fitted to a Levy function discussed in the text.
Upper panels. $N_{\scriptsize{\mbox{part}}}$ scaled ($R^{N_{\scriptsize{\mbox{part}}}}_{AA}$) nuclear modification factors as a function of $p_{T}$ of $\phi$ mesons for $0-10\%$ and $20-30\%$ $Cu+Cu$ and $Au+Au$ collisions at $\sqrt{s_{NN}}=200$ GeV. Lower panel. Same as above for $N_{\scriptsize{\mbox{bin}}}$ scaled ($R^{N_{\scriptsize{\mbox{bin}}}}_{AA}$) nuclear modification factor. The error bars represent the statistical and systematic errors added in quadrature. The shaded band in upper panel around 1 at $p_{T}=4.5-5.5$ GeV/$c$ in the right side reflects the uncertainty in $N_{\scriptsize{\mbox{part}}}$ and that on the lower panel for $N_{\scriptsize{\mbox{bin}}}$ calculation for central $Au+Au$ collisions. The respective uncertainties for central $Cu+Cu$ collisions are of similar order.
Identified charged particle spectra of $\pi^{\pm}$, $K^{\pm}$, $p$ and $\pbar$ at mid-rapidity ($|y|<0.1$) measured by the $\dedx$ method in the STAR-TPC are reported for $pp$ and d+Au collisions at $\snn = 200$ GeV and for Au+Au collisions at 62.4 GeV, 130 GeV, and 200 GeV. ... [Shortened for arXiv list. Full abstract in manuscript.]
Uncorrected charged particle multiplicity distribution measured in the TPC in $|\eta| < 0.5$ for Au+Au collisions at 62.4 GeV and 200 GeV. The shaded regions indicate the centrality bins used in the analysis. The 200 GeV data are scaled by a factor 5 for clarity.
Uncorrected charged particle multiplicity distribution measured in the TPC in $|\eta| < 0.5$ for Au+Au collisions at 62.4 GeV and 200 GeV. The shaded regions indicate the centrality bins used in the analysis. The 200 GeV data are scaled by a factor 5 for clarity.
Uncorrected charged particle multiplicity distribution measured in the E-FTPC (Au-direction) within $−3.8 < |\eta| < −2.8$ in d+Au collisions at 200 GeV. The shaded regions indicate the centrality bins used in the analysis.