We report on the measurement of $\rm{J}/\psi$ production in the dielectron channel at mid-rapidity (|y|<1) in p+p and d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from the STAR experiment at the Relativistic Heavy Ion Collider. The transverse momentum $p_{T}$ spectra in p+p for $p_{T}$ < 4 GeV/c and d+Au collisions for $p_{T}$ < 3 GeV/c are presented. These measurements extend the STAR coverage for $\rm{J}/\psi$ production in p+p collisions to low $p_{T}$. The $
The mean square of $p_T$.
Nuclear absorption cross section.
The nuclear modicifation factor vs. $p_T$ for $J\psi$ with |y| < 1 in 0-100 percent central d+Au collisions.
None
No description provided.
A data-driven method was applied to measurements of Au+Au collisions at $\sqrt{s_{_{\rm NN}}} =$ 200 GeV made with the STAR detector at RHIC to isolate pseudorapidity distance $\Delta\eta$-dependent and $\Delta\eta$-independent correlations by using two- and four-particle azimuthal cumulant measurements. We identified a component of the correlation that is $\Delta\eta$-independent, which is likely dominated by anisotropic flow and flow fluctuations. It was also found to be independent of $\eta$ within the measured range of pseudorapidity $|\eta|<1$. The relative flow fluctuation was found to be $34\% \pm 2\% (stat.) \pm 3\% (sys.)$ for particles of transverse momentum $p_{T}$ less than $2$ GeV/$c$. The $\Delta\eta$-dependent part may be attributed to nonflow correlations, and is found to be $5\% \pm 2\% (sys.)$ relative to the flow of the measured second harmonic cumulant at $|\Delta\eta| > 0.7$.
The second harmonic two-particle cumulants for ($\eta_{\alpha}$, $\eta_{\beta}$ pairs for 20-30% central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
The third harmonic two-particle cumulants for ($\eta_{\alpha}$, $\eta_{\beta}$ pairs for 20-30% central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
The second harmonic four-particle cumulant for ($\eta_{\alpha}$, $\eta_{\alpha}$, $\eta_{\beta}$, $\eta_{\beta}$) quadruplets for 20-30% central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
First measurements of the W -> lnu and Z/gamma* -> ll (l = e, mu) production cross sections in proton-proton collisions at sqrt(s) = 7 TeV are presented using data recorded by the ATLAS experiment at the LHC. The results are based on 2250 W -> lnu and 179 Z/gamma* -> ll candidate events selected from a data set corresponding to an integrated luminosity of approximately 320 nb-1. The measured total W and Z/gamma*-boson production cross sections times the respective leptonic branching ratios for the combined electron and muon channels are $\stotW$ * BR(W -> lnu) = 9.96 +- 0.23(stat) +- 0.50(syst) +- 1.10(lumi) nb and $\stotZg$ * BR(Z/gamma* -> ll) = 0.82 +- 0.06(stat) +- 0.05(syst) +- 0.09(lumi) nb (within the invariant mass window 66 < m_ll < 116 GeV). The W/Z cross-section ratio is measured to be 11.7 +- 0.9(stat) +- 0.4(syst). In addition, measurements of the W+ and W- production cross sections and of the lepton charge asymmetry are reported. Theoretical predictions based on NNLO QCD calculations are found to agree with the measurements.
Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.
Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nubar final state.
Measured fiducial cross section times leptonic branching ratio for W+/- production in the combined W+ -> e+ nu and W- -> e- nubar final state.
A search for new heavy particles manifested as resonances in two-jet final states is presented. The data were produced in 7 TeV proton-proton collisions by the Large Hadron Collider (LHC) and correspond to an integrated luminosity of 315 nb^-1 collected by the ATLAS detector. No resonances were observed. Upper limits were set on the product of cross section and signal acceptance for excited-quark (q*) production as a function of q* mass. These exclude at the 95% CL the q* mass interval 0.30 < mq* < 1.26 TeV, extending the reach of previous experiments.
The dijet mass distribution (NUMBER OF EVENTS).
95 PCT CL upper limit of the cross section x acceptance.
We present a measurement of the differential cross section for $t\bar{t}$ events produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV as a function of the transverse momentum ($p_T$) of the top quark. The selected events contain a high-$p_T$ lepton ($\ell$), four or more jets, and a large imbalance in $p_T$, and correspond to 1 fb${}^{-1}$ of integrated luminosity recorded with the D0 detector. Each event must have at least one candidate for a $b$ jet. Objects in the event are associated through a constrained kinematic fit to the $t\bar{t}\to WbW\bar{b} \to \ell\nu b q\bar{q}'\bar{b}$ process. Results from next-to-leading-order perturbative QCD calculations agree with the measured differential cross section. Comparisons are also provided to predictions from Monte Carlo event generators using QCD calculations at different levels of precision.
Total cross section for TOP TOPBAR production integrating over PT.
The inclusive PT spectra for TOP TOPBAR production.
We report a measurement of high-p_T inclusive pi^0, eta, and direct photon production in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV at midrapidity (0 < eta < 1). Photons from the decay pi^0 -> gamma gamma were detected in the Barrel Electromagnetic Calorimeter of the STAR experiment at the Relativistic Heavy Ion Collider. The eta -> gamma gamma decay was also observed and constituted the first eta measurement by STAR. The first direct photon cross section measurement by STAR is also presented, the signal was extracted statistically by subtracting the pi^0, eta, and omega(782) decay background from the inclusive photon distribution observed in the calorimeter. The analysis is described in detail, and the results are found to be in good agreement with earlier measurements and with next-to-leading order perturbative QCD calculations.
Cross sections for inclusive $\pi^0$ production in p + p and d + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The solid lines correspond to NLO pQCD calculations. The measured $\pi^0$ cross sections were not corrected for feed-down contributions $\eta$ -> 3$\pi^0$, $\eta$ -> $\pi^+\pi^-\pi^0$, and $K_S^0$ -> $\pi^0\pi^0$, which were expected to be negligible. Normalization uncertainties of 11.7% for p+p and 5.3% for d+Au are not shown.
The $\eta/\pi^0$ ratio measured in p + p collisions at $\sqrt{s_{NN}}$ = 200 GeV, compared to the PHENIX measurements [27] and to the $m_T$ scaling predictions. Shaded bands in plot are $p_T$-correlated systematic uncertainties and the error bars are statistical uncertainties.
The $\eta/\pi^0$ ratio measured in d + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, compared to the PHENIX measurements [27] and to the $m_T$ scaling predictions. Shaded bands in plot are $p_T$-correlated systematic uncertainties and the error bars are statistical uncertainties.
We present a measurement of the ttbar cross section using high-multiplicity jet events produced in ppbar collisions at sqrt{s}=1.96 TeV. These data were recorded at the Fermilab Tevatron collider with the D0 detector. Events with at least six jets, two of them identified as b jets, were selected from a 1 fb-1 data set. The measured cross section, assuming a top quark mass of 175 GeV/c^2, is 6.9 \pm 2.0 pb, in agreement with theoretical expectations.
Measured top topbar cross section at two values of the top mass.
We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.
Cross sections for inclusive $\pi^0$ production in p + p and d + Au collisions at $\sqrt{s}$ = 200 GeV, compared to a NLO pQCD calculations [8] based on the DDS set of fragmentation functions [24], and to the STAR $\pi^{+-}$ measurement [25]. Normalization uncertainty of 11.7% is not included.
Mean transverse momentum fraction of $\pi^0$s in their associated jets, as a function of pion $p_T$, for electromagnetically triggered events. Systematic errors are shown by the shaded band around the data points. The curves are results from simulations with the PYTHIA event generator. The solid curve includes detector effects simulated by geant, while the dashed curve uses jet finding at the pythia particle level.
Longitudinal double-spin asymmetry for inclusive $\pi^0$ production at midrapidity in p+p collisions at $\sqrt{s}$ = 200 GeV, compared to NLO pQCD calculations based on the gluon distributions from the GRSV [33], GS-C [34], and DSSV [12] global analyses. The systematic error (shaded band) does not include a 9.4% normalization uncertainty due to the beam polarization measurement.
The results of mid-rapidity ($0 < y < 0.8$) neutral pion spectra over an extended transverse momentum range ($1 < p_T < 12$ GeV/$c$) in $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions, measured by the STAR experiment, are presented. The neutral pions are reconstructed from photons measured either by the STAR Barrel Electro-Magnetic Calorimeter (BEMC) or by the Time Projection Chamber (TPC) via tracking of conversion electron-positron pairs. Our measurements are compared to previously published $\pi^{\pm}$ and $\pi^0$ results. The nuclear modification factors $R_{\mathrm{CP}}$ and $R_{\mathrm{AA}}$ of $\pi^0$ are also presented as a function of $p_T$ . In the most central Au+Au collisions, the binary collision scaled $\pi^0$ yield at high $p_T$ is suppressed by a factor of about 5 compared to the expectation from the yield of p+p collisions. Such a large suppression is in agreement with previous observations for light quark mesons and is consistent with the scenario that partons suffer considerable energy loss in the dense medium formed in central nucleus-nucleus collisions at RHIC.
The diphoton invariant mass distributions using the EMC-TPC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.
The diphoton invariant mass distributions using the EMC-TPC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.
The diphoton invariant mass distributions using the EMC-EMC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.