Results on the channels K − p → Λ 0 η 0 , Λ 0 π 0 , Σ 0 π 0 , Λ 0 π 0 π 0 and Σ 0 π 0 π 0 are obtained in a K − p formation experiment using 1 million photographs taken in a heavy liquid bubble chamber filled with a CF 3 BrC 3 H 8 mixture. The results are compared with hydrogen bubble chamber (HBC) experiments and with experiments having full or partial gamma-ray detection. Our Λ 0 π 0 and Λ 0 + neutral cross section agree with HBC results. Our Σ 0 π 0 cross section does not exhibit a bump at 1670 MeV as previously seen in HBC experiments. Our Λ 0 π 0 π 0 data are dominated by a Σ (1385) π 0 production. Our Σ 0 π 0 π 0 data is consistent with the presence of some Σ (1405) π 0 production.
No description provided.
No description provided.
No description provided.
A study has been made of the individual channels that contribute to the reaction K − p → Λ 0 + neutrals in the K − momentum range from 525 to 820 MeV/ c . Total cross sections are presented for the K − p → Λ 0 η 0 , Σ 0 Σ 0 π 0 , Λ 0 π 0 , Σ 0 π 0 and Σ 0 π 0 π 0 channels and differential cross sections for K − p → Λ 0 π 0 . The data were obtained in a heavy liquid bubble chamber experiment with an average gamma detection efficiency of 70%. Only events with all decay gammas detected were used for analysis. This is the first of a series of papers on this subject and presents the experimental technique in detail.
No description provided.
The differential and channel cross sections have been measured for the reactions K L 0 p → K S 0 p and K L 0 p → Λ 0 π + in nine energy intervals in the c.m. range 1605 to 1910 MeV. The regeneration reaction is a combination of the KN amplitudes (with I = 0 and 1) and the K N amplitude ( I = 1) and is very sensitive to the various KN phase-shift solutions, some of which show an exotic I = 0, P 1 resonance. Our results have been expressed in terms of frequency distributions and cross sections, normalised by the Λ 0 π + reaction. These results have been compared with the predictions of various partial-wave analyses. Qualitatively we can eliminate the P 1 non-resonant solution, though no solution correctly predicts our results.
No description provided.
No description provided.
No description provided.
The production of $J/\psi$ mesons in continuum $e^+e^-$ annihilations has been studied with the BABAR detector at energies near the $\Upsilon(4S)$ resonance, approximately 10.6 GeV. The mesons are distinguished from $J/\psi$ production in B decays through their center-of-mass momentum and energy. We measure the cross section $e^+e^-\to J/\psi X$ to be $2.52\pm 0.21\pm 0.21$ pb: for momentum above 2 GeV/c, it is $1.87\pm 0.10\pm 0.15$ pb. We set a 90% confidence level upper limit on the branching fraction for direct $\Upsilon(4S)$\to J/\psi X$ decays at $4.7\times 10^{-4}$.
Cross section measurement.
We present measurements of time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurement uses a data sample of 23 million Upsilon(4S)-->B-anti-B decays collected by the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we find events where one neutral B meson is fully reconstructed in a CP eigenstate containing charmonium and the flavor of the other neutral B meson is determined from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay time distributions in such events. The result is sin2beta=0.34 +/- 0.20 (stat) +/- 0.05 (syst).
Standard Model predicts the time-dependent rate asymmetry as follows: A(t) = (B0(t)-BBAR0(t))/(B0(t)+BBAR0(t)) = SIN(2*BETA)*SIN(Delta(M)*t), where Delta(M) is the mass difference between the two B0 mass eigenstates. The total systematic error equals +0.50 -0.46.
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
Using 116.1 fb^-1 of data collected by the BABAR detector, we present an analysis of Xic0 production in B decays and from the ccbar continuum, with the Xic0 decaying into Omega- K+ and Xi- pi+ final states. We measure the ratio of branching fractions B(Xic0 -> Omega- K+)/B(Xic0 -> Xi- pi+) to be 0.294 +- 0.018 +- 0.016, where the first uncertainty is statistical and the second is systematic. The Xic0 momentum spectrum is measured on and 40 MeV below the Upsilon(4S) resonance. From these spectra the branching fraction product B(B -> Xic0 X) x B(Xic0 -> Xi- pi+) is measured to be (2.11 +- 0.19 +- 0.25) x 10^-4 and the cross-section product sigma(e+ e- -> Xic0 X) x B(Xic0 -> Xi- pi+) from the continuum is measured to be (388 +- 39 +- 41) fb at a center-of-mass energy of 10.58 GeV.
Measured cross section on the UPSILON(4S) resonance for the inclusive producton of XI/C0 times its branching ratio to XI- PI+.
Measured cross section on and off the UPSILON(4S) resonance for the inclusive producton of XI/C0 times its branching ratio to XI- PI+. with the off-resonacne data are scaled to a centre-of-mass energy of 10.580 GeV.
Total measured cross section for XI/C0 production for the continuum data scaled to a centre-of-mass energy of 10.580 GeV.
The process e+e- --> pi+ pi- pi0 gamma has been studied at a center-of-mass energy near the Y(4S) resonance using a 89.3 fb-1 data sample collected with the BaBar detector at the PEP-II collider. From the measured 3pi mass spectrum we have obtained the products of branching fractions for the omega and phi mesons, B(omega --> e+e-)B(omega --> 3pi)=(6.70 +/- 0.06 +/- 0.27)10-5 and B(phi --> e+e-)B(phi --> 3pi)=(4.30 +/- 0.08 +/- 0.21)10-5, and evaluated the e+e- --> pi+ pi- pi0 cross section for the e+e- center-of-mass energy range 1.05 to 3.00 GeV. About 900 e+e- --> J/psi gamma --> pi+ pi- pi0 gamma events have been selected and the branching fraction B(J/psi --> pi+ pi- pi0)=(2.18 +/- 0.19)% has been measured.
The measured 3PI mass spectrum calculated for a 25 MeV bin size.
We study the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-\gamma$, with a hard photon radiated from the initial state. About 60,000 fully reconstructed events have been selected from 89 $fb^{-1}$ of BaBar data. The invariant mass of the hadronic final state defines the effective \epem center-of-mass energy, so that these data can be compared with the corresponding direct $e^+e^-$ measurements. From the $4\pi$-mass spectrum, the cross section for the process $e^+e^-\to\pi^+\pi^-\pi^+\pi^-$ is measured for center-of-mass energies from 0.6 to 4.5 $GeV/c^2$. The uncertainty in the cross section measurement is typically 5%. We also measure the cross sections for the final states $K^+ K^- \pi^+\pi^-$ and $K^+ K^- K^+ K^-$. We observe the $J/\psi$ in all three final states and measure the corresponding branching fractions. We search for X(3872) in $J/\psi (\to\mu^+\mu^-) \pi^+\pi^-$ and obtain an upper limit on the product of the $e^+e^-$ width of the X(3872) and the branching fraction for $X(3872) \to J/\psi\pi^+\pi^-$.
Measured PI+ PI- PI+ PI- cross sections. The errors are statistical only.
Measured K+ K- PI+ PI- cross sections. The errors are statistical only.
Measured K+ K- K+ K- cross sections. The errors are statistical only.
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.