If quarks are composite particles then excited states are expected. We have searched in pp¯ collisions for excited quarks (q*) which decay to common quarks by emitting a W boson (q*→qW) or a photon (q*→qγ). The simplest model of excited quarks has been excluded for mass M*<540 GeV/c2 at 95% confidence level.
No description provided.
No description provided.
No description provided.
The dijet invariant mass distribution has been measured in the region between 140 and 1000 GeV/c2, in 1.8 TeV p p¯ collisions. Data collected with the Collider Detector at Fermilab show agreement with QCD calculations. A limit on quark compositeness of Λc>1.3 TeV is obtained. Axigluons with masses between 240 and 640 GeV/c2 are excluded at 95% C.L. if we assume ten open decay channels. Model-independent limits on the production of heavy particles decaying into two jets are also presented.
No description provided.
The first prompt photon measurement from the CDF experiment at the Fermilab pp¯ Collider is presented. Two independent methods are used to measure the cross section: one for high transverse momentum (PT) and one for lower PT. Comparisons to various theoretical calculations are shown. The cross section agrees qualitatively with QCD calculations but has a steeper slope at low PT.
Cross section using profile method and an isolation cut of 2 GeV in a cone around the photon. There is an additional 27 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
Cross section using conversion method and an isolation cut of 2 GeV in a cone around the photon. There is an additional +32,-46 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
Cross section using profile method and an isolation cut of 15 pct of the photon PT in a cone around the photon. There is an additional 29 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
The dijet invariant mass distribution has been measured in the region between 120 and 1000 GeV/c2, in 1.8-TeV pp¯ collisions. The data sample was collected with the Collider Detector at Fermilab (CDF). Data are compared to leading order (LO) and next-to-leading order (NLO) QCD calculations using two different clustering cone radii R in the jet definition. A quantitative test shows good agreement of data with the LO and NLO QCD predictions for a cone of R=1. The test using a cone of R=0.7 shows less agreement. The NLO calculation shows an improvement compared to LO in reproducing the shape of the spectrum for both radii, and approximately predicts the cone size dependence of the cross section.
Observed cross section using R = 1.0. The second systematic error is the theoretical uncertainty and includes only the effect of the out-of-cone losses, the underlying event energy, and the contribution of multi-jet events.
Observed cross section using R = 0.7. The second systematic error is the theoretical uncertainty and includes only the effect of the out-of-cone losses, the underlying event energy, and the contribution of multi-jet events.