Results from the study of the rare decays $K^+\toπ^+ν\barν$, $K^{+}\rightarrowπ^{+}μ^{+}μ^{-}$ and $K^{+}\rightarrowπ^{+}γγ$ at the NA62 experiment at CERN are interpreted in terms of improved limits for $\rm{B}(K^+\toπ^+X)$ and coupling parameters of hidden-sector models, where $X$ is a mediator. World-leading limits are achieved for dark photon, dark scalar and axion-like particle models.
Number of expected and observed events as a function of squared missing mass.
Number of expected and observed events as a function of squared missing mass.
Single Event Sensitivity (SES) for the $K^{+}\rightarrow\pi^{+}X$ search as a function of X mass.
Precision measurements of Higgs boson differential production cross sections are a key tool to probe the properties of the Higgs boson and test the standard model. New physics can affect both Higgs boson production and decay, leading to deviations from the distributions that are expected in the standard model. In this paper, combined measurements of differential spectra in a fiducial region matching the experimental selections are performed, based on analyses of four Higgs boson decay channels ($\gamma\gamma$, ZZ$^{(*)}$, WW$^{(*)}$, and $\tau\tau$) using proton-proton collision data recorded with the CMS detector at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The differential measurements are extrapolated to the full phase space and combined to provide the differential spectra. A measurement of the total Higgs boson production cross section is also performed using the $\gamma\gamma$ and ZZ decay channels, with a result of 53.4$^{+2.9}_{-2.9}$ (stat)$^{+1.9}_{-1.8}$ (syst) pb, consistent with the standard model prediction of 55.6 $\pm$ 2.5 pb. The fiducial measurements are used to compute limits on Higgs boson couplings using the $\kappa$-framework and the SM effective field theory.
Observed best fit differential cross section for the $p_{T}^{H}$ observable
Observed best fit differential cross section for the $N_{jets}$ observable
Observed best fit differential cross section for the $p_{T}^{j1}$ (GeV) observable
The NA62 experiment at CERN has the capability to collect data in a beam-dump mode, where 400 GeV protons are dumped on an absorber. In this configuration, New Physics particles, including dark photons, dark scalars, and axion-like particles, may be produced in the absorber and decay in the instrumented volume beginning approximately 80 m downstream of the dump. A search for these particles decaying in flight to hadronic final states is reported, based on an analysis of a sample of $1.4 \times 10^{17}$ protons on dump collected in 2021. No evidence of a New Physics signal is observed, excluding new regions of parameter spaces of multiple models.
90% CL upper limit in dark photon coupling vs mass parameter space for combined di-lepton and hadronic final states, using bremsstrahlung production without the time-like form factor.
90% CL upper limit in dark photon coupling vs mass parameter space for combined di-lepton and hadronic final states, including mixing and bremsstrahlung production with a time-like form factor.
90% CL upper limit in dark scalar coupling vs mass parameter space for combined di-lepton and hadronic final states.
The multiplicities of positive and negative pions, kaons and unidentified hadrons produced in deep-inelastic scattering are measured in bins of the Bjorken scaling variable $x$, the relative virtual-photon energy $y$ and the fraction of the virtual-photon energy transferred to the final-state hadron $z$. Data were obtained by the COMPASS Collaboration using a 160 GeV muon beam of both electric charges and a liquid hydrogen target. These measurements cover the kinematic domain with photon virtuality $Q^2 > 1$ (GeV/$c)^2$, $0.004 < x < 0.4$, $0.1 < y < 0.7$ and $0.2 < z < 0.85$, in accordance with the kinematic domain used in earlier published COMPASS multiplicity measurements with an isoscalar target. The calculation of radiative corrections was improved by using the Monte Carlo generator DJANGOH, which results in up to 12% larger corrections in the low-$x$ region.
h+/h- multiplicities in (x, y, z) bins with corrections, applied corrections for VM and RC are provided in the table
pi+/pi- multiplicities in (x, y, z) bins with corrections, applied corrections for VM and RC are provided in the table
K+/K- multiplicities in (x, y, z) bins with corrections, applied corrections for VM and RC are provided in the table
An analysis is presented based on models of the intrinsic transverse momentum (intrinsic $k_\mathrm{T}$) of partons in nucleons by studying the dilepton transverse momentum in Drell-Yan events. Using parameter tuning in event generators and existing data from fixed-target experiments and from hadron colliders, our investigation spans three orders of magnitude in center-of-mass energy and two orders of magnitude in dilepton invariant mass. The results show an energy-scaling behavior of the intrinsic $k_\mathrm{T}$ parameters, independent of the dilepton invariant mass at a given center-of-mass energy.
Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP5 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.
Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP4 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.
Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP3 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.
A summary of the constraints from searches performed by the ATLAS Collaboration for the electroweak production of charginos and neutralinos is presented. Results from eight separate ATLAS searches are considered, each using 140 fb$^{-1}$ of proton-proton data at a centre-of-mass energy of $\sqrt{s}$=13 TeV collected at the Large Hadron Collider during its second data-taking run. The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, where R-parity conservation is assumed and the lightest supersymmetric particle is assumed to be the lightest neutralino. Constraints from previous electroweak, flavour and dark matter related measurements are also considered. The results are presented in terms of constraints on supersymmetric particle masses and are compared with limits from simplified models. Also shown is the impact of ATLAS searches on parameters such as the dark matter relic density and the spin-dependent and spin-independent scattering cross-sections targeted by direct dark matter detection experiments. The Higgs boson and Z boson `funnel regions', where a low-mass neutralino would not oversaturate the dark matter relic abundance, are almost completely excluded by the considered constraints. Example spectra for non-excluded supersymmetric models with light charginos and neutralinos are also presented.
SLHA files and exclusion information (in CSV format) are available to download for the pMSSM models in this paper. Please refer to <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2020-15/inputs/ATLAS_EW_pMSSM_Run2.html">this web page</a> for download links along with a description of the contents.
SLHA files and exclusion information (in CSV format) are available to download for the pMSSM models in this paper. Please refer to <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2020-15/inputs/ATLAS_EW_pMSSM_Run2.html">this web page</a> for download links along with a description of the contents.
The femtoscopic study of pairs of identical pions is particularly suited to investigate the effective source function of particle emission, due to the resulting Bose-Einstein correlation signal. In small collision systems at the LHC, pp in particular, the majority of the pions are produced in resonance decays, which significantly affect the profile and size of the source. In this work, we explicitly model this effect in order to extract the primordial source in pp collisions at $\sqrt{s} = 13$ TeV from charged $\pi$-$\pi$ correlations measured by ALICE. We demonstrate that the assumption of a Gaussian primordial source is compatible with the data and that the effective source, resulting from modifications due to resonances, is approximately exponential, as found in previous measurements at the LHC. The universality of hadron emission in pp collisions is further investigated by applying the same methodology to characterize the primordial source of K-p pairs. The size of the primordial source is evaluated as a function of the transverse mass ($m_{\rm T}$) of the pairs, leading to the observation of a common scaling for both $\pi$-$\pi$ and K-p, suggesting a collective effect. Further, the present results are compatible with the $m_{\rm T}$ scaling of the p-p and p$-\Lambda$ primordial source measured by ALICE in high multiplicity pp collisions, providing compelling evidence for the presence of a common emission source for all hadrons in small collision systems at the LHC. This will allow the determination of the source function for any hadron--hadron pairs with high precision, granting access to the properties of the possible final-state interaction among pairs of less abundantly produced hadrons, such as strange or charmed particles.
K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in HM pp collisions at $\sqrt{s_{\mathrm {NN}}}=13 $ TeV (1.2<$m_T$<1.4 GeV/$c^{2}$).
K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in HM pp collisions at $\sqrt{s_{\mathrm {NN}}}=13 $ TeV (1.4<$m_T$<1.5 GeV/$c^{2}$).
K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in HM pp collisions at $\sqrt{s_{\mathrm {NN}}}=13 $ TeV (1.5<$m_T$<1.8 GeV/$c^{2}$).
A sample of 3984 candidates of the $K^+\to\pi^+\gamma\gamma$ decay, with an estimated background of $291\pm14$ events, was collected by the NA62 experiment at CERN during 2017-2018. In order to describe the observed di-photon mass spectrum, the next-to-leading order contribution in chiral perturbation theory was found to be necessary. The decay branching ratio in the full kinematic range is measured to be $(9.61\pm0.17)\times10^{-7}$. The first search for production and prompt decay of an axion-like particle with gluon coupling in the process $K^+\to\pi^+a$, $a\to\gamma\gamma$ is also reported.
See caption of Figure 6.
See caption of Figure 6.
Upper limits at 90% CL of $B(K^+\to\pi^+a)\times B(a\to\gamma\gamma)$ in the prompt ALP decay assumption.
Constraints on the Higgs boson self-coupling are set by combining double-Higgs boson analyses in the $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$ and $b\bar{b} \gamma \gamma$ decay channels with single-Higgs boson analyses targeting the $\gamma \gamma$, $ZZ^*$, $WW^*$, $\tau^+ \tau^-$ and $b\bar{b}$ decay channels. The data used in these analyses were recorded by the ATLAS detector at the LHC in proton$-$proton collisions at $\sqrt{s}=13$ TeV and correspond to an integrated luminosity of 126$-$139 fb$^{-1}$. The combination of the double-Higgs analyses sets an upper limit of $\mu_{HH} < 2.4$ at 95% confidence level on the double-Higgs production cross-section normalised to its Standard Model prediction. Combining the single-Higgs and double-Higgs analyses, with the assumption that new physics affects only the Higgs boson self-coupling ($\lambda_{HHH}$), values outside the interval $-0.4< \kappa_{\lambda}=(\lambda_{HHH}/\lambda_{HHH}^{\textrm{SM}})< 6.3$ are excluded at 95% confidence level. The combined single-Higgs and double-Higgs analyses provide results with fewer assumptions, by adding in the fit more coupling modifiers introduced to account for the Higgs boson interactions with the other Standard Model particles. In this relaxed scenario, the constraint becomes $-1.4 < \kappa_{\lambda} < 6.1$ at 95% CL.
Observed and expected 95% CL upper limits on the signal strength for double-Higgs production from the bbbb, bb$\tau\tau$ and bb$\gamma\gamma$ decay channels, and their statistical combination. The value $m_H$ = 125.09 GeV is assumed when deriving the predicted SM cross-section. The expected limit and the corresponding error bands are derived assuming the absence of the HH process and with all nuisance parameters profiled to the observed data.
Observed and expected 95% CL exclusion limits on the production cross-sections of the combined ggF HH and VBF HH processes as a function of $\kappa_\lambda$, for the three double-Higgs search channels and their combination. The expected limits assume no HH production. The red line shows the theory prediction for the combined ggF HH and VBF HH cross-section as a function of $\kappa_\lambda$ where all parameters and couplings are set to their SM values except for $\kappa_\lambda$. The band surrounding the red cross-section lines indicate the theoretical uncertainty of the predicted cross-section.
Observed and expected 95% CL exclusion limits on the production cross-sections of the VBF HH process as a function of $\kappa_{2V}$, for the three double-Higgs search channels and their combination. The expected limits assume no VBF HH production. The red line shows the predicted VBF HH cross-section as a function of $\kappa_{2V}$. The bands surrounding the red cross-section lines indicate the theoretical uncertainty of the predicted cross-section. The uncertainty band is smaller than the width of the plotted line.
We study the spin-exotic $J^{PC} = 1^{-+}$ amplitude in single-diffractive dissociation of 190 GeV$/c$ pions into $\pi^-\pi^-\pi^+$ using a hydrogen target and confirm the $\pi_1(1600) \to \rho(770) \pi$ amplitude, which interferes with a nonresonant $1^{-+}$ amplitude. We demonstrate that conflicting conclusions from previous studies on these amplitudes can be attributed to different analysis models and different treatment of the dependence of the amplitudes on the squared four-momentum transfer and we thus reconcile their experimental findings. We study the nonresonant contributions to the $\pi^-\pi^-\pi^+$ final state using pseudo-data generated on the basis of a Deck model. Subjecting pseudo-data and real data to the same partial-wave analysis, we find good agreement concerning the spectral shape and its dependence on the squared four-momentum transfer for the $J^{PC} = 1^{-+}$ amplitude and also for amplitudes with other $J^{PC}$ quantum numbers. We investigate for the first time the amplitude of the $\pi^-\pi^+$ subsystem with $J^{PC} = 1^{--}$ in the $3\pi$ amplitude with $J^{PC} = 1^{-+}$ employing the novel freed-isobar analysis scheme. We reveal this $\pi^-\pi^+$ amplitude to be dominated by the $\rho(770)$ for both the $\pi_1(1600)$ and the nonresonant contribution. We determine the $\rho(770)$ resonance parameters within the three-pion final state. These findings largely confirm the underlying assumptions for the isobar model used in all previous partial-wave analyses addressing the $J^{PC} = 1^{-+}$ amplitude.
Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the first $t^\prime$ bin from $0.100$ to $0.141\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 8(a). In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_0.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_0</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>
Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the second $t^\prime$ bin from $0.141$ to $0.194\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(a) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_1.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_1</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>
Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the third $t^\prime$ bin from $0.194$ to $0.326\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(b) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_2.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_2</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>