Differential cross sections as a function of transverse momentum are presented for the production at ∼90° (in the c.m. system) of π±, K±, p, and p¯ in p-nucleus collisions at incident proton energies of 200 and 300 GeV.
No description provided.
No description provided.
No description provided.
We have applied the Estabrooks and Martin analysis to a sample of 5279 events produced in the reactionπ+n ⇒ pρ0, and have made a density matrix study, including a positivity analysis, of theJ = 0, 1, 2density matrix in the f0 region, using a sample of 2385 events.
S-CHANNEL MOMENTS.
T-CHANNEL MOMENTS.
S-CHANNEL FRAME.
The v and v nucleon total cross-sections have been determined as a function of energy using a sample of 2500 v and 950 v event. The results are compared with predictions of scaling and charge symmetry hypotheses.
Measured charged current total cross section.
Measured charged current total cross section.
We have investigated the final states K ∗0 (890)Σ, K ∗0 (890)Σ 0 and K ∗0 (890) Y 1 ∗0 (1385) produced in π − p interactions at 3.93 GeV/ c . We present the differential cross sections and spin density matrix elements for the resonances as functions of momentum transfer, as well as the gL and Σ 0 polarizations. The Σ 0 polarization is found to be positive and maximal. An amplitude analysis is performed for the K ∗ Λ and K ∗ Σ 0 reactions, and it is found that one natural parity transversity amplitude is dominant for the latter.
No description provided.
No description provided.
No description provided.
We have measured muon-proton deep inelastic scattering in the range 0.4<q2<3.6 (GeV/c)2. The data are consistent with muon-electron universality, and if the ratio ρ=νW2(μ−p)νW2(e−p) is fitted with the form ρ=N(1+q2Λ2)−2, we obtain N=0.997±0.043 and Λ−2=+0.006±0.016 (GeV/c)2. This result establishes that |Λ|>~5.1 GeV/c with 95% confidence.
No description provided.
No description provided.
No description provided.
We have measured total cross sections for p−p scattering with the results σT=40.42±0.27 mb at 200 GeV/c and 40.40 ± 0.28 mb at 300 GeV/c. Our 300-GeV/c result is significantly higher than published data from the CERN intersecting storage rings. Our data, taken together with the Serpukhov data, indicate that the cross section rises ≅ 2 mb between 60 and 250 GeV. The variation of the cross section with energy may be more complicated than the a+blnsα behavior commonly assumed for Elab≳50 GeV.
Axis error includes +- 0.0/0.0 contribution (QUOTED ERRORS ARE COMBINED STATISTICAL AND SYSTEMATIC).
Measurements of K + p elastic scattering have been carried out at 13 momenta between 432 MeV/ c and 939 MeV/ c using spark chambers. The data establish unambiguously the constructive interference of the Coulomb and nuclear amplitudes at 432 MeV/ c . The elastic cross section is found to be independent of momentum through the range covered. The phase shifts for S, P, D and F waves are obtained in an energy dependent analysis in which higher waves are held at theoretical values. The initial behaviour ofthe P, D and F amplitudes is quite close to that predicted by the calculation of the peripheral partial waves. Only the P3 and D5 amplitudes become strikingly different with increasing momentum.
COULOMB INTERFERENCE EFFECT SEEN AT SMALL ANGLES.
No description provided.
No description provided.
We have studied K+π− elastic scattering in the reaction K+p→K+π−Δ++ at 12 GeVc and in the Kπ mass interval 800 to 1000 MeV. We have performed a partial-wave analysis in this Kπ mass region, dominated by the p-wave resonance K*(890), in order to obtain information about the s-wave amplitude. We have extrapolated the K+π− moments, the total cross section, and p-wave cross section to the pion pole. The p-wave cross section is close to the unitarity limit and can be described by a Breit-Wigner resonance form, with parameters M=896±2 MeV and Γ=47±3 MeV. We then perform an energy-independent phase-shift analysis of the extrapolated moments and total cross section using this Breit-Wigner form for the p wave and a previously determined small negative phase shift for the I=32s wave. For the I=12s-wave phase shift we find the so called "down" solution, which has a phase shift that rises slowly from 20° at M(Kπ)=800 MeV to 60° at M(Kπ)=1000 MeV. The energy dependence of this phase shift is well described by an effective range form, with a scattering length a01=−0.33±0.05 F. The so-called "up" solution is eliminated or has large χ2 everywhere except for two overlapping mass intervals at M(Kπ)=890 and 900 MeV. However, due to limited statistics, we expect two solutions for the s wave very near the mass where the p wave is resonant. We then perform an energy-dependent partial-wave analysis and find again no evidence for an s-wave resonance although, due to limited statistics, we could not exclude one at 890 MeV with Γ<7 MeV.
Extrapolation.
Extrapolation. Initial K+ PI- system in P-wave state.
The differential cross sections for neutron-proton charge-exchange scattering have been measured for incident neutron momenta between 8 and 29 GeV /c and for four-momentum transfers | t | between 0.002 and 1.0 (GeV/ c ) 2 . A neutron beam with a broad momentum spectrum was scattered from a liquid hydrogen target. The momenta and scattering angles of the forward-scattered protons were measured by a spark-chamber magnet spectrometer. The flight times and scattering angles of the recoil neutrons were measured by a bank of thick scintillation counters. The efficiencies of the neutron counters were determined in a separate measurement. Absolute normalization of the data was obtained from a measurement of the diffraction dissociation of neutrons from carbon nuclei. Differential cross sections, based on ∼ 23 000 events, are presented for 9 different momenta. The shape of the differential cross sections and the momentum dependence are examined in detail.
No description provided.
No description provided.
No description provided.
We present results of measurements of the n−p total cross section between 30 and 280 GeV/c. The measurements were carried out with a neutron beam by using the standard transmission technique and a liquid-hydrogen target. A total-absorption calorimeter was used to determine the neutron energy. Our measurements, which have an accuracy of ∼1%, indicate a smooth rise of approximately 1.5 mb between 50 and 280 GeV/c. The combined n−p and p−p data above 20 GeV/c are well fitted by the expression σ=38.4+0.85|ln(s95)|1.47 mb.
MOST DATA TAKEN WITH 300 GEV/C INCIDENT PROTONS TO PRODUCE THE NEUTRON BEAM, WITH SOME ALSO USING 200 GEV/C PROTONS.