Inclusive pi^0, eta, and direct photon production at high transverse momentum in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 81 (2010) 064904, 2010.
Inspire Record 840766 DOI 10.17182/hepdata.99155

We report a measurement of high-p_T inclusive pi^0, eta, and direct photon production in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV at midrapidity (0 < eta < 1). Photons from the decay pi^0 -> gamma gamma were detected in the Barrel Electromagnetic Calorimeter of the STAR experiment at the Relativistic Heavy Ion Collider. The eta -> gamma gamma decay was also observed and constituted the first eta measurement by STAR. The first direct photon cross section measurement by STAR is also presented, the signal was extracted statistically by subtracting the pi^0, eta, and omega(782) decay background from the inclusive photon distribution observed in the calorimeter. The analysis is described in detail, and the results are found to be in good agreement with earlier measurements and with next-to-leading order perturbative QCD calculations.

9 data tables

Cross sections for inclusive $\pi^0$ production in p + p and d + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. The solid lines correspond to NLO pQCD calculations. The measured $\pi^0$ cross sections were not corrected for feed-down contributions $\eta$ -> 3$\pi^0$, $\eta$ -> $\pi^+\pi^-\pi^0$, and $K_S^0$ -> $\pi^0\pi^0$, which were expected to be negligible. Normalization uncertainties of 11.7% for p+p and 5.3% for d+Au are not shown.

The $\eta/\pi^0$ ratio measured in p + p collisions at $\sqrt{s_{NN}}$ = 200 GeV, compared to the PHENIX measurements [27] and to the $m_T$ scaling predictions. Shaded bands in plot are $p_T$-correlated systematic uncertainties and the error bars are statistical uncertainties.

The $\eta/\pi^0$ ratio measured in d + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, compared to the PHENIX measurements [27] and to the $m_T$ scaling predictions. Shaded bands in plot are $p_T$-correlated systematic uncertainties and the error bars are statistical uncertainties.

More…