The DIS diffractive cross section, $d\sigma^{diff}_{\gamma^* p \to XN}/dM_X$, has been measured in the mass range $M_X < 15$ GeV for $\gamma^*p$ c.m. energies $60 < W < 200$ GeV and photon virtualities $Q^2 = 7$ to 140 GeV$^2$. For fixed $Q^2$ and $M_X$, the diffractive cross section rises rapidly with $W$, $d\sigma^{diff}_{\gamma^*p \to XN}(M_X,W,Q^2)/dM_X \propto W^{a^{diff}}$ with $a^{diff} = 0.507 \pm 0.034 (stat)^{+0.155}_{-0.046}(syst)$ corresponding to a $t$-averaged pomeron trajectory of $\bar{\alphapom} = 1.127 \pm 0.009 (stat)^{+0.039}_{-0.012} (syst)$ which is larger than $\bar{\alphapom}$ observed in hadron-hadron scattering. The $W$ dependence of the diffractive cross section is found to be the same as that of the total cross section for scattering of virtual photons on protons. The data are consistent with the assumption that the diffractive structure function $F^{D(3)}_2$ factorizes according to $\xpom F^{D(3)}_2 (\xpom,\beta,Q^2) = (x_0/ \xpom)^n F^{D(2)}_2(\beta,Q^2)$. They are also consistent with QCD based models which incorporate factorization breaking. The rise of $\xpom F^{D(3)}_2$ with decreasing $\xpom$ and the weak dependence of $F^{D(2)}_2$ on $Q^2$ suggest a substantial contribution from partonic interactions.
Cross section for diffractive scattering.
Cross section for diffractive scattering.
Cross section for diffracitve scattering.
We report the first observation of diffractively produced open charm in 800−GeV/c pp collisions of the type pp→pD*X. We measure cross sections of σdiff(D*+)=(0.185±0.044±0.054)μb and σdiff(D*−)=(0.174±0.034±0.029)μb. Our measurements are based on 4.3×109 events recorded by FNAL E690 in the fixed-target run of 1991. We compare our results with previous fixed-target charm experiments.
No description provided.
We report measured asymmetries as a function of polar scattering angle for the reactions p¯p→π−π+ and p¯p→p¯p, using a polarized proton target. The annihilation data, obtained at a p¯ momentum of 1.64 GeV/c, are the first asymmetry data to be collected for this channel. A fit of these data and published differential cross section data is made by a partial-wave expansion, and the results are compared with a previous analysis. The elastic scattering data, obtained at 1.64 and 2.55 GeV/c, are fitted with an eight-parameter strong-absorption model.
No description provided.
Diffractive dissociation of virtual photons, gamma* p-->Xp, has been studied in ep interactions with the ZEUS detector at HERA using an integrated luminosity of approx. 10 pb^-1. The data cover photon virtualities 0.17 < Q^2< 0.70 GeV^2 and 3 < Q^2< 80 GeV^2 with 3<M_X<38 GeV, where M_X is the mass of the hadronic final state.
The double differential cross section d2sig/dmx/dt measured with the LPS method for the Q**2 range 0.17 to 0.70 GeV**2.
The double differential cross section d2sig/dmx/dt measured with the LPS method for the Q**2 range 3 to 9 GeV**2.
The double differential cross section d2sig/dmx/dt measured with the LPS method for the Q**2 range 9 to 80 GeV**2.
The spin analyzing power A in 28-GeV/c proton-proton elastic scattering was measured at P⊥2=6.5 (GeV/c)2 using a polarized proton target and a high-intensity unpolarized proton beam at the Brookhaven National Laboratory Alternating Gradient Synchrotron. The result of (24±8)% confirms that the analyzing power is large and rising in the large-P⊥2 region.
No description provided.
The analyzing power in 28 GeV/c proton/proton elastic scattering was measured at P2∥=5.95 and 6.56 (GeV/c)2 using a polarized proton target and an unpolarized proton beam at the Brookhaven National Laboratory AGS. Results indicate that the analyzing power, A, is rising sharply with P2∥.
No description provided.
We measured the analyzing power A out to P⊥2=7.1 (GeV/c)2 with high precision by scattering a 24-GeV/c unpolarized proton beam from the new University of Michigan polarized proton target; the target’s 1-W cooling power allowed a beam intensity of more than 2×1011 protons per pulse. This high beam intensity together with the unexpectedly high average target polarization of about 85% allowed unusually accurate measurements of A at large P⊥2. These precise data confirmed that the one-spin parameter A is nonzero and indeed quite large at high P⊥2; most theoretical models predict that A should go to zero.
Errors quoted contain both statistical and systematic uncertainties.
The analyzing power A in 28-GeV/c proton-proton elastic scattering was measured with a polarized proton target and a high-intensity unpolarized proton beam at the Brook-haven National Laboratory alternating-gradient synchrotron. The P⊥2 range of 2.85 to 5.95 (GeV/c)2 was covered with good precision. A small dip of about -3.5% was found near P⊥2=3.5 (GeV/c)2 where a 24-GeV/c CERN experiment had reported a deep dip of about -16% with large errors. In the previously unexplored large-P⊥2 region near 6 (GeV/c)2 these new large-error points suggest that A may be rising.
No description provided.
The analyzing power, A, was measured in proton-proton elastic scattering with use of a polarized proton target and 28-GeV/c primary protons from the alternating-gradient synchrotron. Over the P⊥2 range of 0.5 to 2.8 (GeV/c)2, the data show interesting structure. There is a rather sharp dip at P⊥2=0.8 (GeV/c)2 corresponding to the break in the elastic differential cross section at the end of the diffraction peak.
No description provided.
A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=7$ TeV is presented. In a special run with high-$\beta^{\star}$ beam optics, an integrated luminosity of 80 $\mu$b$^{-1}$ was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $|t|$ range from 0.01 GeV$^2$ to 0.1 GeV$^2$ to extrapolate to $|t|\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $$\sigma_{\mathrm{tot}}(pp\rightarrow X) = 95.35 \; \pm 0.38 \; ({\mbox{stat.}}) \pm 1.25 \; ({\mbox{exp.}}) \pm 0.37 \; (\mbox{extr.}) \; \mbox{mb},$$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to $|t|\rightarrow 0$. In addition, the slope of the elastic cross section at small $|t|$ is determined to be $B = 19.73 \pm 0.14 \; ({\mbox{stat.}}) \pm 0.26 \; ({\mbox{syst.}}) \; \mbox{GeV}^{-2}$.
The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The Optical Point dsigma/(elastic)/dt(t-->0), the total elastic cross section and the observed elastic cross section within the fiducial volume. The first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.