The reaction $\gamma p \rightarrow \omega p$ $(\omega \rightarrow \pi~+\pi~-\pi~0$ and $\pi~0\rightarrow\gamma\gamma)$ has been studied in $ep$ interactions using the \mbox{ZEUS} detector at photon-proton centre-of-mass energies between $70$ and $90\uni{GeV}$ and $|t| < 0.6\uni{GeV}~2$, where $t$ is the squared four momentum transferred at the proton vertex. The elastic \ome photoproduction cross section has been measured to be $\sigma_{\gamma p\rightarrow \omega p} = 1.21\pm 0.12\pm 0.23 \mu\mbox{b}$. The differential cross section $d\sigma_{\gamma p\rightarrow \omega p} /d|t|$ has an exponential shape $\mbox{e}~{-b |t|}$ with a slope $b = 10.0\pm 1.2\pm 1.3\uni{GeV}~{-2}$. The angular distributions of the decay pions are consistent with {\it s}-channel helicity conservation. When compared to low energy data, the features of $\omega$ photoproduction as measured at HERA energies are in agreement with those of a soft diffractive process. Previous measurements of the $\rho~0$ and $\phi$ photoproduction cross sections at HERA show a similar behaviour.
Total Elastic Cross Section.
No description provided.
SLOPE OF DSIG/DT distribution.
The production of $\phi$ mesons in the reaction $e~{+}p \rightarrow e~{+} \phi p$ ($\phi \rightarrow K~{+}K~{-}$), for $7 < Q~2 < 25$ GeV$~2$ and for virtual photon-proton centre of mass energies ($W$) in the range 42-134 GeV, has been studied with the ZEUS detector at HERA. When compared to lower energy data at similar $Q~2$, the results show that the $\gamma~*p \rightarrow \phid p$ cross section rises strongly with $W$. This behaviour is similar to that previously found for the $\gamma~*p \rightarrow \rho~0 p$ cross section. This strong dependence cannot be explained by production through soft pomeron exchange. It is, however, consistent with perturbative QCD expectations, where it reflects the rise of the gluon momentum density in the proton at small $x$. The ratio of $\sigma (\phi) / \sigma (\rho~0)$, which has previously been determined by ZEUS to be 0.065 $\pm$ 0.013 (stat.) in photoproduction at a mean $W$ of 70 GeV, is measured to be 0.18 $\pm $ 0.05 (stat.) $\pm$ 0.03 (syst.) at a mean $Q~2$ of 12.3 GeV$~2$ and mean $W$ of $\approx$ 100 GeV and is thus approaching at large $Q~2$ the value of 2/9 predicted from the quark charges of the vector mesons and a flavour independent production mechanism.
No description provided.
Additional 32 PCT Systematic error.
Additional 32 PCT Systematic error.
The Michel parameters ϱ, η, ξ, and ξδ, the chirality parameter ξ h and the τ polarization P τ are measured using 32012 τ pair decays. Their values are extracted from the energy spectra of leptons and hadrons in τ − → l − ν l ν τ and τ − → π − ν τ decays, the energy and decay angular distributions in τ − → ϱ − ν τ decays, and the correlations in the energy spectra and angular distributions of the decay products. Assuming universality in leptonic and semileptonic τ decays, the results are ϱ = 0.794±0.039±0.031, η = 0.25±0.17±0.11, ξ = 0.94±0.21±0.07, ξδ = 0.81±0.14±0.06, ξ h = −0.970±0.053±0.011, and P τ = −0.154±0.018±0.012. The measurement is in agreement with the V-A hypothesis for the weak charged current.
No description provided.
We have searched for signatures of polarization in hadronic jets from $Z~0 \rightarrow q \bar{q}$ decays using the ``jet handedness'' method. The polar angle asymmetry induced by the high SLC electron-beam polarization was used to separate quark jets from antiquark jets, expected to be left- and right-polarized, respectively. We find no evidence for jet handedness in our global sample or in a sample of light quark jets and we set upper limits at the 95\% C.L. of 0.063 and 0.099 respectively on the magnitude of the analyzing power of the method proposed by Efremov {\it et al.}
Polarized E- beam. Events were classified as being of light or heavy flavors based on impact parameters of charged tracks measured in the vertex detector. Jet handedness are measured for helicity-based and chirality-based analysis (seetext). C=95PCT CL indicates the upper limits at the 95 PCT C.L. on the magnitudes.
We have measured the polarization of D*, the energy dependence of the polarization, and the spin-density matrix of D* in e+e− annihilation at a center-of-mass energy of 29 GeV using the Time Projection Chamber detector at the SLAC storage ring PEP. In 147 pb−1 of data we see no strong evidence for polarization, alignment, or final-state interactions in this fragmentation process.
Polarization is the factor alpha(z) in the expression d width (D*-->D pi)/domega = C(1+alpha(z)cos(theta)**2).
Spin density matrices for D* --> D0 pi+.
We report measured asymmetries as a function of polar scattering angle for the reactions p¯p→π−π+ and p¯p→p¯p, using a polarized proton target. The annihilation data, obtained at a p¯ momentum of 1.64 GeV/c, are the first asymmetry data to be collected for this channel. A fit of these data and published differential cross section data is made by a partial-wave expansion, and the results are compared with a previous analysis. The elastic scattering data, obtained at 1.64 and 2.55 GeV/c, are fitted with an eight-parameter strong-absorption model.
No description provided.
We report measured values of the asymmetry in the elastic scattering of K+ mesons from polarized protons. The data were obtained at fourteen incident K+ momenta from 1.33 to 2.58 GeVc; the approximate angular range covered was −0.85<cosθKc.m.<0.9. We compare our results with other available measurements and note several significant differences.
No description provided.
No description provided.
No description provided.
abstract only
No description provided.
No description provided.
No description provided.