Differential two-particle normalized cumulants ($R_2$) and transverse momentum correlations ($P_2$) are measured as a function of the relative pseudorapidity and azimuthal angle difference $( \Delta \eta, \Delta \varphi )$ of charged particle pairs in minimum bias pp collisions at $\sqrt{\textit{s}}$ = 13 TeV. The measurements use charged hadrons in the pseudorapidity region of $|\eta| < 0.8$ and the transverse momentum range 0.2 $< \textit{p}_{\mathrm T} < $ 2.0 $\mathrm{GeV}/\textit{c}$ in order to focus on soft multiparticle interactions and to complement prior measurements of these correlation functions in p-Pb and Pb-Pb collisions. The correlation functions are reported for both unlike-sign and like-sign pairs and their charge-independent and charge-dependent combinations. Both the $R_2$ and $P_2$ measured in pp collisions exhibit features qualitatively similar to those observed in p-Pb and Pb-Pb collisions. The $\Delta\eta$ and $\Delta\varphi$ root mean square widths of the near-side peak of the correlation functions are evaluated and compared with those observed in p-Pb and Pb-Pb collisions and show smooth evolution with the multiplicity of charged particles produced in the collision. The comparison of the measured correlation functions with predictions from PYTHIA8 shows that this model qualitatively captures their basic structure and characteristics but feature important differences. In addition, the $R_2^{\rm CD}$ is used to determine the charge balance function of hadrons produced within the detector acceptance of the measurements. The integral of the balance function is found to be compatible with those reported by a previous measurement in Pb-Pb collisions. These results, which are sensitive to the interplay between the underlying event and mini-jets in pp collisions, establish a baseline for heavy-ion collisions.
Correlation functions $R_2^{\rm US}$ of charged hadrons measured in minimum bias pp collisions at $\sqrt{s}=13\;\text{TeV}$. Charged hadrons are selected in the range $0.2 < p_{\rm T} < 2.0$ GeV/$c$ and with pseudorapidity $|\eta| < 0.8$.
Correlation functions $R_2^{\rm LS}$ of charged hadrons measured in minimum bias pp collisions at $\sqrt{s}=13\;\text{TeV}$. Charged hadrons are selected in the range $0.2 < p_{\rm T} < 2.0$ GeV/$c$ and with pseudorapidity $|\eta| < 0.8$.
Correlation functions $P_2^{\rm US}$ of charged hadrons measured in minimum bias pp collisions at $\sqrt{s}=13\;\text{TeV}$. Charged hadrons are selected in the range $0.2 < p_{\rm T} < 2.0$ GeV/$c$ and with pseudorapidity $|\eta| < 0.8$.
The momentum-differential invariant cross sections of ${\pi^{0}}$ and $\eta$ mesons are reported for pp collisions at $\sqrt{s}$ = 13 TeV at midrapidity ($|y|<0.8$). The measurement is performed in a broad transverse-momentum range of $0.2<p_{\rm T}<200$ GeV/$c$ and $0.4<p_{\rm T}<60$ GeV/$c$ for the ${\pi^{0}}$ and $\eta$, respectively, extending the $p_{\rm T}$ coverage of previous measurements. Transverse-mass-scaling violation of up to 60% at low transverse momentum has been observed, agreeing with measurements at lower collision energies. Transverse Bjorken $x$ ($x_{\rm T}$) scaling of the ${\pi^{0}}$ cross sections at LHC energies is fulfilled with a power-law exponent of $n$ = 5.01$\pm$0.05, consistent with values obtained for charged pions at similar collision energies. The data is compared to predictions from next-to-leading order perturbative QCD calculations, where the ${\pi^{0}}$ spectrum is best described using the CT18 parton distribution function and the NNFF1.0 or BDSS fragmentation function. Expectations from PYTHIA8 and EPOS LHC overestimate the spectrum for the ${\pi^{0}}$ and are not able to describe the shape and magnitude of the $\eta$ spectrum. The charged-particle multiplicity dependent ${\pi^{0}}$ and $\eta$ $p_{\rm T}$ spectra show the expected hardening with increasing multiplicity. This is demonstrated across a broad transverse-momentum range and up to events with a charged-particle multiplicity exceeding five times the mean value in minimum bias collisions. The absolute magnitude of the $\eta/\pi^{0}$ ratio shows a dependence on the charged-particle multiplicity for $p_{\rm T}<4$ GeV/$c$, qualitatively described by PYTHIA8 and EPOS LHC due to a rising contribution from feed-down of heavier particles to the ${\pi^{0}}$ spectrum.
Invariant differential cross section of the $\pi^{0}$ versus transverse momentum for pp collisions at $\sqrt{s}$ = 13 TeV.
Invariant differential cross section of the $\eta$ meson versus transverse momentum for pp collisions at $\sqrt{s}$ = 13 TeV.
The $\eta/\pi^{0}$ ratio as a function of $p_{\rm T}$ for pp collisions at $\sqrt{s}$ = 13 TeV.
This paper presents a study of the inclusive forward J/$\psi$ yield as a function of forward charged-particle multiplicity in pp collisions at $\sqrt{s} = 13$ TeV using data collected by the ALICE experiment at the CERN LHC. The results are presented in terms of relative J/$\psi$ yields and relative charged-particle multiplicities with respect to these quantities obtained in inelastic collisions having at least one charged particle in the pseudorapidity range $|\eta| < 1$. The J/$\psi$ mesons are reconstructed via their decay into $\mu^+ \mu^-$ pairs in the forward rapidity region ($2.5 < y < 4$). The relative multiplicity is estimated in the forward pseudorapidity range $-3.7 < \eta < -1.7$, which overlaps with the J/$\psi$ rapidity region. The results show a steeper-than-linear increase of the J/$\psi$ yields versus the multiplicity. They are compared with previous measurements and theoretical model calculations.
Forward inclusive J/$\psi$ relative yield as a function of the relative multiplicity in −3.7 < $\eta$ < −1.7 in INEL > 0 pp collisions at $\sqrt{s}$ = 13 TeV.
The interaction between pions and nucleons plays a crucial role in hadron physics. It represents a fundamental building block of the low-energy QCD dynamics and is subject to several resonance excitations. This work studies the p-$\pi^{\pm}$ dynamics using femtoscopic correlations in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV measured by ALICE at the LHC. As the final-state interaction between protons and pions is well constrained by scattering experiments and the study of pionic hydrogen, the results give access to information on the particle-emitting source in pp collisions using the femtoscopy methods. The scaling of the source size of primordial protons and pions against their pair transverse mass is extracted. The results are compared with the source sizes studied with p-p, p-K$^+$, and $\pi^{\pm}$-$\pi^{\pm}$ pairs by ALICE in the same collision system and are found to be in agreement for the different particle pairs. This reinforces recent findings by ALICE of a common emission source for all hadron-pairs in pp collisions at LHC energies. Furthermore, the p-p-$\pi^{\pm}$ systems are studied using three-particle femtoscopy in pp collisions at $\sqrt{s} = 13$ TeV. The presence of three-body effects is analyzed utilizing the cumulant expansion method. In this formalism, the known two-body interactions are subtracted in order to isolate the three-body effects. For both, p-p-$\pi^{+}$ and p-p-$\pi^{-}$, a non-zero cumulant is found, indicating effects beyond pairwise interactions. These results give information on the coupling of the pion to multiple nucleons.
p-$\pi^{+}$ + antip-$\pi^{-}$ correlation function in high-multiplicity (0-0.17%) pp collisions at $\sqrt{s}=13$ TeV for $m_\text{T} \in [0.54, 0.75)$ GeV/$c^2$
p-$\pi^{+}$ + antip-$\pi^{-}$ correlation function in high-multiplicity (0-0.17%) pp collisions at $\sqrt{s}=13$ TeV for $m_\text{T} \in [0.75, 0.95)$ GeV/$c^2$
p-$\pi^{+}$ + antip-$\pi^{-}$ correlation function in high-multiplicity (0-0.17%) pp collisions at $\sqrt{s}=13$ TeV for $m_\text{T} \in [0.95, 1.20)$ GeV/$c^2$
This paper presents the primary charged-particle multiplicity distributions in proton-lead collisions at a centre-of-mass energy per nucleon-nucleon collision of $\sqrt{s_{\rm NN}} = 5.02$ TeV. The distributions are reported for non-single diffractive collisions in different pseudorapidity ranges. The measurements are performed using the combined information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE. The multiplicity distributions are parametrised with a double negative binomial distribution function which provides satisfactory descriptions of the distributions for all the studied pseudorapidity intervals. The data are compared to models and analysed quantitatively, evaluating the first four moments (mean, standard deviation, skewness, and kurtosis). The shape evolution of the measured multiplicity distributions is studied in terms of KNO variables and it is found that none of the considered models reproduces the measurements. This paper also reports on the average charged-particle multiplicity, normalised by the average number of participating nucleon pairs, as a function of the collision energy. The multiplicity results are then compared to measurements made in proton-proton and nucleus-nucleus collisions across a wide range of collision energies.
Charged-particle multiplicity distributions for different pseudorapidity intervals measured in NSD p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5020~\mathrm{GeV}$.
The pseudorapidity dependence of the double NBD parameters $\langle n \rangle_1$, $\langle n \rangle_2$, $k_1$, and $k_2$ in NSD p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5020~\mathrm{GeV}$.
First four moments ($\langle N_{\mathrm{ch}}\rangle$, $\sigma$, $S$, and $\kappa$) of charged-particle multiplicity distributions for different pseudorapidity intervals in NSD p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5020~\mathrm{GeV}$.
Correlations among conserved quantum numbers, such as the net-electric charge, the net-baryon, and the net-strangeness in heavy-ion collisions, are crucial for exploring the QCD phase diagram. In this letter, these correlations are investigated using net-proton number (as a proxy for the net-baryon), net-kaon number (for the net-strangeness), and net-charged particle number in Pb-Pb collisions at $\sqrt{s_\text{NN}}=5.02$ TeV with the ALICE detector. The observed correlations deviate from the Poissonian baseline, with a more pronounced deviation at LHC energies than at RHIC. Theoretical calculations of the Thermal-FIST hadron resonance gas model, HIJING, and EPOS LHC event generators are compared with experimental results, where a significant impact of resonance decays is observed. Thermal-FIST calculations under the grand canonical and canonical ensembles highlight significant differences, underscoring the role of local charge conservation in explaining the data. Recent lattice QCD studies have demonstrated that the magnetic field generated by spectator protons in heavy-ion collisions affects susceptibility ratios, in particular those related to the net-electric charge and the net-baryon numbers. The experimental findings are in qualitative agreement with the expectations of lattice QCD.
$\kappa^{2}_{\pi}$ as a function of centrality (%) in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV for Set 1 $p_\mathrm{T}$ acceptance.
$\kappa^{2}_{\pi}$ as a function of centrality (%) in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV for Set 2 $p_\mathrm{T}$ acceptance.
$\kappa^{2}_\mathrm{K}$ as a function of centrality (%) in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV for Set 1 $p_\mathrm{T}$ acceptance.
Event-by-event fluctuations of the event-wise mean transverse momentum, $\langle p_{\mathrm{T}}\rangle$, of charged particles produced in proton$-$proton (pp) collisions at $\sqrt{s}$ = 5.02 TeV, Xe$-$Xe collisions at $\sqrt{s_{\mathrm{NN}}} =$ 5.44 TeV, and Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}} =$ 5.0 TeV are studied using the ALICE detector based on the integral correlator $\langle\langle Δp_{\rm T}Δp_{\rm T}\rangle\rangle $. The correlator strength is found to decrease monotonically with increasing produced charged-particle multiplicity measured at midrapidity in all three systems. In Xe$-$Xe and Pb$-$Pb collisions, the multiplicity dependence of the correlator deviates significantly from a simple power-law scaling as well as from the predictions of the HIJING and AMPT models. The observed deviation from power-law scaling is expected from transverse radial flow in semicentral to central Xe$-$Xe and Pb$-$Pb collisions. In pp collisions, the correlation strength is also studied by classifying the events based on the transverse spherocity, $S_0$, of the particle production at midrapidity, used as a proxy for the presence of a pronounced back-to-back jet topology. Low-spherocity (jetty) events feature a larger correlation strength than those with high spherocity (isotropic). The strength and multiplicity dependence of jetty and isotropic events are well reproduced by calculations with the PYTHIA 8 and EPOS LHC models.
Normalized transverse momentum correlator, $\sqrt{ \langle\langle \Delta p_{{\rm T}1}\Delta p_{{\rm T}2} \rangle\rangle }$$/\langle\langle p_{\rm T} \rangle\rangle $, as a function of the charged-particle multiplicity density, $\langle{\rm d}N_{\rm ch}/{\rm d}\eta \rangle$, in pp collisions at $\sqrt{s}$ = 5.02 TeV.
Normalized transverse momentum correlator, $\sqrt{ \langle\langle \Delta p_{{\rm T}1}\Delta p_{{\rm T}2} \rangle\rangle }$$/\langle\langle p_{\rm T} \rangle\rangle $, as a function of the charged-particle multiplicity density, $\langle{\rm d}N_{\rm ch}/{\rm d}\eta \rangle$, in Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.
Normalized transverse momentum correlator, $\sqrt{ \langle\langle \Delta p_{{\rm T}1}\Delta p_{{\rm T}2} \rangle\rangle }$$/\langle\langle p_{\rm T} \rangle\rangle $, as a function of the charged-particle multiplicity density, $\langle{\rm d}N_{\rm ch}/{\rm d}\eta \rangle$, in Xe--Xe collisions at $\sqrt{s_{\rm NN}}$ = 5.44 TeV.
The ALICE Collaboration at the CERN LHC has measured the inclusive production cross section of isolated photons at midrapidity as a function of the photon transverse momentum ($p_{\rm T}^{\gamma}$), in Pb$-$Pb collisions in different centrality intervals, and in pp collisions, at centre-of-momentum energy per nucleon pair of $\sqrt{s_{\rm NN}}=5.02$ TeV. The photon transverse momentum range is between 10-14 and 40-140 GeV/$c$, depending on the collision system and on the Pb$-$Pb centrality class. The result extends to lower $p_{\rm T}^{\gamma}$ than previously published results by the ATLAS and CMS experiments at the same collision energy. The covered pseudorapidity range is $|\eta^{\gamma}| <0.67$. The isolation selection is based on a charged particle isolation momentum threshold $p_{\rm T}^{\rm iso,~ch} = 1.5$ GeV/$c$ within a cone of radii $R=0.2$ and $0.4$. The nuclear modification factor is calculated and found to be consistent with unity in all centrality classes, and also consistent with the HG-PYTHIA model, which describes the event selection and geometry biases that affect the centrality determination in peripheral Pb$-$Pb collisions. The measurement is compared to next-to-leading order perturbative QCD calculations and to the measurements of isolated photons and Z$^0$ bosons from the CMS experiment, which are all found to be in agreement.
Isolated-photon differential cross section measured in pp and Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02~\mathrm{TeV}$ for five Pb$-$Pb centrality classes for $R=0.2$. Note that the Pb$-$Pb data in the first five columns is scaled by $\langle N_{\mathrm{coll}} \rangle$, unlike in the figure in the paper where the theory was scaled by $\langle N_{\mathrm{coll}} \rangle$. Last two columns correspond to theory NLO pQCD calculations with JETPHOX, for pp (PDF) and Pb$-$Pb (nPDF) collisions calculated for the 0$-$100% centrality class. Data statistical and systematic uncertainties are provided. The theory scale and PDF uncertainties are provided. The data normalisation uncertainties are provided in the paper.
Isolated-photon differential cross section measured in pp and Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02~\mathrm{TeV}$ for five Pb$-$Pb centrality classes for $R=0.4$. Note that the Pb$-$Pb data in the first five columns is scaled by $\langle N_{\mathrm{coll}} \rangle$, unlike in the figure in the paper where the theory was scaled by $\langle N_{\mathrm{coll}} \rangle$. Last two columns correspond to theory NLO pQCD calculations with JETPHOX, for pp (PDF) and Pb$-$Pb (nPDF) collisions calculated for the 0$-$100% centrality class. Data statistical and systematic uncertainties are provided. The theory scale and PDF uncertainties are provided. The data normalisation uncertainties are provided in the paper.
Ratio of isolated-photon cross section measured with $R=0.4$ over $R=0.2$ for Pb$-$Pb and pp collisions at $\sqrt{s_{\mathrm{NN}}}=5.02~\mathrm{TeV}$. Each column for each Pb$-$Pb collisions centrality class and for pp collisions. The last two columns for the NLO pQCD JETPHOX calculations for pp (PDF) and Pb$-$Pb (nPDF) collisions. Data statistical and systematic uncertainties are provided. The theory statiscal (Monte Carlo approach) and PDF uncertainties are provided.
The distribution of angular correlations between prompt charm hadrons and primary charged particles in pp collisions is sensitive to the charm-quark hadronisation process. In this letter, charm-baryon correlations are measured for the first time by studying the azimuthal-angle difference between charged particles and prompt $Λ_{\rm c}^{+}$ baryons produced in pp collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV, with the ALICE detector. $Λ_{\rm c}^{+}$ baryons are reconstructed at midrapidity ($|y| < 0.5$) in the transverse-momentum interval $3 < p_{\rm T} < 16$ GeV/$c$, and correlated with charged particles with $p_{\rm T} > 0.3$ GeV/$c$ and pseudorapidity $|η| < 0.8$. For $3< p_{\rm T}^{Λ_{\rm c}^{+},{\rm D}} <5$ GeV/$c$, the comparison with published measurements of D-meson and charged-particle correlations in the same collision system hints at a larger number of low-momentum particles associated with $Λ_{\rm c}^{+}$-baryon triggers than with D-meson triggers, both in the collinear and opposite directions with respect to the trigger particle. These differences can be quantified by the comparison of the properties of the near- and away-side correlation peaks, and are not reproduced by predictions of various Monte Carlo event generators, generally underpredicting the associated particle yields at $p_{\rm T}^{\rm assoc}<1$ GeV/$c$. This tension between $Λ_{\rm c}^{+}$-baryon and D-meson associated peak yields could suggest a modified fragmentation of the charm quark, or a different hadronisation process, when a charm baryon is produced in the final state.
Azimuthal-correlation distributions of $\Lambda_\mathrm{c}^{+}$ baryons with associated particles in pp collisions at $\sqrt{s} = 13$ TeV, compared to the average of the azimuthal-correlation distributions of D$^{0}$, D$^{+}$, and D$^{*+}$ mesons with associated particles in the same collision system. The distributions are shown after the baseline subtraction. Charm hadrons are reported for $3 < p_{\rm T} < 5$ GeV/$c$, associated particles for $0.3 < p_{\rm T} < 1$ GeV/$c$. The rapidity range for the D mesons and $\Lambda_\mathrm{c}^{+}$ baryons is $|y^{\rm D,\Lambda_\mathrm{c}^{+}}| < 0.5$. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D,\Lambda_{c}^{+}}| < 1$. The azimuthal-correlation distributions are reported in the range $0 < \Delta\varphi < \pi$.
Azimuthal-correlation distributions of $\Lambda_\mathrm{c}^{+}$ baryons with associated particles, i.e. primary charged particles, in pp collisions at $\sqrt{s} = 13$ TeV, compared to the average of the azimuthal-correlation distributions of D$^{0}$, D$^{+}$, and D$^{*+}$ mesons with associated particles in the same collision system. The distributions are shown after the baseline subtraction. Charm hadrons are reported for $5 < p_{\rm T} < 8$ GeV/$c$, associated particles for $0.3 < p_{\rm T} < 1$ GeV/$c$. The rapidity range for the D mesons and $\Lambda_\mathrm{c}^{+}$ baryons is $|y^{\rm D,\Lambda_\mathrm{c}^{+}}| < 0.5$. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D,\Lambda_{c}^{+}}| < 1$. The azimuthal-correlation distributions are reported in the range $0 < \Delta\varphi < \pi$.
Azimuthal-correlation distributions of $\Lambda_\mathrm{c}^{+}$ baryons with associated particles, i.e. primary charged particles, in pp collisions at $\sqrt{s} = 13$ TeV, compared to the average of the azimuthal-correlation distributions of D$^{0}$, D$^{+}$, and D$^{*+}$ mesons with associated particles in the same collision system. The distributions are shown after the baseline subtraction. Charm hadrons are reported for $8 < p_{\rm T} < 16$ GeV/$c$, associated particles for $p_{\rm T} > 1$ GeV/$c$. The rapidity range for the D mesons and $\Lambda_\mathrm{c}^{+}$ baryons is $|y^{\rm D,\Lambda_\mathrm{c}^{+}}| < 0.5$. Correlations are integrated for $|\Delta\eta|=|\eta_{\rm ch}-\eta_{\rm D,\Lambda_{c}^{+}}| < 1$. The azimuthal-correlation distributions are reported in the range $0 < \Delta\varphi < \pi$.
In this letter, we present the first measurement of direct photons at the transverse momentum of $ 1 < p_{\rm T} < 6$ GeV/$c$ at midrapidity $|η| < 0.8$ in inelastic and high-multiplicity proton--proton collisions at a centre-of-mass energy of $\sqrt{s} =$ 13 TeV. The fraction of virtual direct photons in the inclusive virtual photon spectrum is obtained from a fit to the dielectron invariant mass spectrum. In the limit of zero invariant mass, this fraction is equal to the relative contribution of real direct photons in the inclusive real photon spectrum. Contributions from decays of light-flavour neutral mesons are estimated using independent measurements in proton-proton collisions at the same energy and the same event class. For the first time at the LHC energies, a direct-photon signal is observed at low $p_{\rm T}$ in both inelastic and high-multiplicity event classes, with a significance of 3.2$σ$ and 1.9$σ$ in terms of standard deviations, correspondingly. The yield of direct photons in inelastic pp collisions is compared to perturbative QCD calculations. The integrated photon yield is studied as a function of charged-particle multiplicity and is compared to the results from other experiments and theoretical calculations. The results show a significant increase of direct-photon yield with charged-particle multiplicity.
The dielectron cross section in inelastic pp collisions at $\sqrt{s}$ = 13 TeV as a function of invariant mass for 2 < $p_{\rm T,ee}$ < 3 GeV/$c$.
The dielectron cross section in high-multiplicity pp collisions at $\sqrt{s}$ = 13 TeV as a function of invariant mass for 2 < $p_{\rm T,ee}$ < 3 GeV/$c$.
The direct-photon fraction r in inelastic pp collisions at $\sqrt{s}$ = 13 TeV as a function of transverse momentum for 1 < $p_{\rm T}$ < 6 GeV/$c$. r is the ratio of direct GAMMA to inclusive GAMMA.