Final total cross sections are given for a counter experiment at SLAC on hadronic photon absorption in hydrogen, deuterium, carbon, copper, and lead at incident energies from 3.7 to 18.3 GeV. Some of the nucleon cross sections have been revised and the C, Cu, and Pb data from 3.7 to 7.4 GeV have not been reported previously. The cross sections for complex nuclei vary approximately as A0.9 in our energy range, indicating that the photon interacts, at least partially, as a strongly interacting particle. The energy dependences of the proton and neutron cross sections are also similar to those of hadron-nucleon cross sections and hence may be fitted by a typical Regge parametrization, yielding σT(γp)=(98.7±3.6)+(65.0±10.1)ν−12 μb and σT(γn)=(103.4±6.7)+(33.1±19.4)ν−12 μb, where ν is the photon energy in GeV. These extrapolate to the same value at infinite energy, consistent with Pomeranchukon exchange, and the energy-dependent part yields an isovector-to-isoscalar-exchange ratio of 0.18 ± 0.06. While these observations are qualitatively consistent with vector meson dominance, quantitatively vector dominance fails in relating our results to ρ photo-production on hydrogen or to experiments determining the ρ-nucleon cross section. Vector dominance cannot be rescued by assuming that the ρ-photon coupling constant depends on the photon mass. Instead, an additional short-range interaction is apparently required, possibly due to a heavy (≳ 2 GeV / c2) vector meson or to a bare-photon interaction. The additional interaction accounts for approximately 20% of the total photoabsorption cross section.
DATA ARE GROUPED IN SETS OF FOUR TAGGING ENERGIES FOR EACH INCIDENT POSITRON ENERGY.
CROSS SECTIONS FOR EACH INCIDENT POSITRON ENERGY AVERAGED OVER THE FOUR TAGGING ENERGIES.
TOTAL CROSS SECTION, EFFECTIVE NUCLEON NUMBER (A-EFF) AND EFFECTIVE ATTENUATION (A-EFF/A) FOR CARBON, COPPER AND LEAD TARGETS. 'SIG(NUCLEON)' IS THE AVERAGE NUCLEON CROSS SECTION.
Full angular distributions of the polarization parameter in elastic K+p scattering at 1.37, 1.45, 1.60, 1.71, 1.80, 1.89, 2.11, and 2.31 GeV/c are presented. These data were obtained in an experiment at the Zero Gradient Synchrotron using a polarized proton target with arrays of scintillation and Čerenkov counters to detect the scattered particles.
No description provided.
No description provided.
No description provided.
An improved upper limit for ψ photoproduction near threshold is presented.
The branching ratio for J/PSI --> E+ E- is taken as 0.06.
The product of the photoproduction cross section at 11.1 GeV for ψ(3105) on nucleons times the branching ratio for ψ into e+e− is less than 75 pb, at the 90% confidence level. This result implies a ψ-nucleon total cross section of less than 1.2 mb.
The branching ratio for J/PSI --> E+ E- is taken as 0.06.
The s and t dependence of incoherent ψ(3100) photoproduction from deuterium has been measured at the Stanford Linear Accelerator Center. ψ(3700) photoproduction and ψ(3100) photoproduction from hydrogen have also been measured.
No description provided.
No description provided.
No description provided.
Exclusive photoproduction cross sections have been measured for the processes γp→π+n, γp→π0p, γp→π−Δ++, γp→ρ0p, γp→K+Λ, and γp→K+Σ0 at large t and u values at several energies for each process between 4 and 7.5 GeV. These measurements taken together with past data taken at small values of t and u provide complete angular distributions. The data show the usual small t and u peaks and a central region in which the cross section decreases approximately as s−7. The results are discussed within the context of parton or constituent models.
No description provided.
No description provided.
No description provided.
In a search for optical rotation near the 8755-Å magnetic-dipole absorption line in atomic Bi, our first results set an upper limit F<10−6 on a parity nonconserving amplitude associated with the line. This limit improves upon earlier parity tests in atoms by three orders of magnitude. Further improvement of at least another order of magnitude appears possible by this method which should then provide an exacting test of parity conservation in the neutral weak-current interaction in atoms.
No description provided.
ρ± photoproduction from hydrogen and deuterium at 9.6 GeV is studied. The reactions γp→ρ+n and γp→ρ−Δ++(1236) have cross sections much larger than expected from pion exchange alone. t distributions do not show the sharp forward peak characteristic of one-pion exchange contributions. Density matrices indicate an isotropic decay distribution. The ratio of ρ+ to ρ− production on deuterium differs from unity and by the amount expected from interference between ρ and A2 exchanges. We conclude that π exchange is unimportant for ρ± photoproduction, and infer that ρ exchange dominates.
No description provided.
No description provided.
DENSITY MATRICES IN HELICITY FRAME - UNPUBLISHED.
We have studied ω photoproduction using 7.5- to 10.5-GeV tagged photons. Cross sections from hydrogen lie 22% below the bubble chamber results of Ballam et al., but have a similar slope. Density matrices indicate approximate s-channel helicity conservation. The proton-neutron cross-section difference is midway between zero and the value suggested by the γp−γn total-cross-section difference. Fits to the cross sections for D, Be, and Cu and those for Be, C, Al, Cu, and Pb from a previous experiment yield σωN=25.4±2.7 mb and γω24π=7.6±1.2.
FORWARD CROSS SECTION IS 366 +- 49 MUB/GEV**2 AND SLOPE IS 47.1 +- 8.0 GEV**-2.
FORWARD CROSS SECTION IS 9.56 +- 1.24 MB/GEV**2 AND SLOPE IS 160 +- 23 GEV**-2.
We report measurements of inelastic photoproduction of ω and ρ± mesons from hydrogen and deuterium at incident photon energies in the range 7.5-10.5 GeV. For ωΔ and ρ−Δ++ production, differential cross sections dσdt′ and spin density matrices are presented. For higher missing masses the cross sections dσdMX2 and invariant structure functions F(x) are also given. The data are compared to a one-pion-exchange model. We conclude that pion exchange is dominant for inelastic ω photoproduction, but unimportant for ρ±.
CROSS SECTION PER NUCLEON FOR COMBINED HYDROGEN AND DEUTERIUM DATA ALLOWING FOR A GLAUBER CORRECTION FACTOR OF 0.88 FOR THE DEUTERIUM CROSS SECTIONS.
HYDROGEN AND DEUTERIUM DATA COMBINED BY AVERAGING.
OBTAINED BY EXTRAPOLATING A FIT TO D(SIG)/DT OVER -T = 0 TO 0.52 GEV**2.