The photon total cross section on protons has been measured with high precision in the Fermilab tagged-photon beam for photon energies from 18 to 185 GeV. The cross section decreases to a broad minimum near 40 GeV, and then rises by about 4 μb over the remainder of the range. A ρ+ω+ϕ vector-dominance model (normalized to low-energy data) falls below the high-energy results by 2 to 6 μb, suggesting a contribution from charm-anticharm states.
No description provided.
No description provided.
The ϒ′ state has been observed as a narrow resonance at M ( ϒ ′) = 10.02 ± 0.02 GeV in e + e − annihilations, using a NaI and lead-glass detector in the DORIS storage ring at DESY. The ratio Г ee Г had /Г tot of electronic, hadronic, and total widths has been measured to be 0.32 ± 0.13 keV. The parameters of the Г particle have also been determined to be/ M (Г)
The data renormalized to the expected level of continuum based on the ratioof R=sigma(hadrons)/sigma(mu+mu-) = 4.7 at sqrt(s) = 5 GeV.
The data renormalized to the expected level of continuum based on the ratioof R=sigma(hadrons)/sigma(mu+mu-) = 4.7 at sqrt(s) = 5 GeV.
Measurements of flux-normalized neutrino and antineutrino total charged-current cross sections (σ) in the energy range 45
No description provided.
No description provided.
No description provided.
The charged-current cross sections for neutrinos and antineutrinos on nucleons in the energy range 20–200 GeV are given. Taken in conjunction with the previous Gargamelle results, they show that σ E is almost constant with energy for antineutrinos, and falls with energy for neutrinos. The value of 〈q 2 〉 E decreases with energy for both neutrinos and antineutrinos, and these deviations from exact Bjorken scaling are consistent with those observed in electron and muon inelastic scattering. We find no evidence for new heavy quark states with right-handed coupling.
Measured charged current total cross section.
Measured charged current total cross section.
We present results on flux-normalized neutrino and antineutrino cross sections near y=0 from data obtained in the Fermilab narrow-band beam. We conclude that values of σ0=dσdy|y=0 are consistent with rising linearly with energy over the range 45<~Eν<~20.5 GeV. The separate averages of ν and ν¯, each measured to 4%, are equal to well within the errors. The best fit for the combined data gives σ0E=(0.719±0.035)×10−38 cm2/GeV at an average Eν of 100 GeV.
FE nucleus. The SIG/Enu is fitted to CONST(N=SIG)+CONST(N=T)*E.
FE nucleus. Averaged over the energies and beams.
We have measured the production cross section for K s 0 in e + e − annihilation from 3.6 to 5.0 GeV center of mass energy. A substantial increase of the K s 0 yield is observed around 4 GeV in qualitative agreement with the charm hypothesis.
THE DATA GIVEN HERE AT 9.3 GEV AND ABOVE ARE REPORTED IN C. BERGER ET AL., PL 104B, 79 (1981). THE 12.0 AND 30 GEV DATA WERE TAKEN AT PETRA.
No description provided.
No description provided.
We have measured the neutron-proton charge-exchange differential cross section in the momentum interval 60 to 300 GeV/c, with squared four-momentum transfers 0.002 to 0.8 (GeV/c)2. Independent of incident momentum, the data are characterized by a sharp forward peak of width 0.02 (GeV/c)2, followed by a shoulder and gentler falloff at higher momentum transfers.
No description provided.
The differential cross sections for the elastic scattering of π+, π−, K+, K−, p, and p¯ on protons have been measured in the t interval -0.04 to -0.75 GeV2 at five momenta: 50, 70, 100, 140, and 175 GeV/c. The t distributions have been parametrized by the quadratic exponential form dσdt=Aexp(B|t|+C|t|2) and the energy dependence has been described in terms of a single-pole Regge model. The pp and K+p diffraction peaks are found to shrink with α′∼0.20 and ∼0.15 GeV−2, respectively. The p¯p diffraction peak is antishrinking while π±p and K−p are relatively energy-independent. Total elastic cross sections are calculated by integrating the differential cross sections. The rapid decline in σel observed at low energies has stopped and all six reactions approach relatively constant values of σel. The ratio of σelσtot approaches a constant value for all six reactions by 100 GeV, consistent with the predictions of the geometric-scaling hypothesis. This ratio is ∼0.18 for pp and p¯p, and ∼0.12-0.14 for π±p and K±p. A crossover is observed between K+p and K−p scattering at |t|∼0.19 GeV2, and between pp and p¯p at |t|∼0.11 GeV2. Inversion of the cross sections into impact-parameter space shows that protons are quite transparent to mesons even in head-on collisions. The probability for a meson to pass through a proton head-on without interaction inelastically is ∼20% while it is only ∼6% for an incident proton or antiproton. Finally, the results are compared with various quark-model predictions.
No description provided.
No description provided.
No description provided.
We report the result of a brief experiment to measure the cross section for photoproduction of Jψ(3100). At a mean energy of 55 GeV we find this cross section per nucleon to be 37.5 ± 8.2 (statistical) ± 4 (systematic) nb. The result establishes the previously indicated rise in Jψ photoproduction on protons above 20 GeV and suggests that the rise has occurred by 55 GeV.
CROSS SECTION PER NUCLEON DERIVED FROM DEUTERIUM DATA ASSUMING INCOHERENT PART OF T DISTRIBUTION HAS EXPERIMENTAL SLOPE OF 1.8 +- 0.4 GEV**-2, 6 PCT COHERENT PART CALCULATED WITH KNOWN DEUTERIUM WAVE FUNCTION AND NEGLECTING SHADOWING. The mean P quoted in the table assumes the J/PSI energy equals the photon energy.
The ratio of π+p to pp elastic scattering is found to be smoothly varying over the range −t=0.03 to 0.4 GeV2. It is well fitted by a single exponential, indicating the forward behavior must be quite similar for the two reactions.
ACTUALLY THE DATA ARE THE EXPONENTIAL SLOPE OF THE RATIO OF D(SIG)/DT FOR THE TWO REACTIONS.