We report the result of a brief experiment to measure the cross section for photoproduction of Jψ(3100). At a mean energy of 55 GeV we find this cross section per nucleon to be 37.5 ± 8.2 (statistical) ± 4 (systematic) nb. The result establishes the previously indicated rise in Jψ photoproduction on protons above 20 GeV and suggests that the rise has occurred by 55 GeV.
CROSS SECTION PER NUCLEON DERIVED FROM DEUTERIUM DATA ASSUMING INCOHERENT PART OF T DISTRIBUTION HAS EXPERIMENTAL SLOPE OF 1.8 +- 0.4 GEV**-2, 6 PCT COHERENT PART CALCULATED WITH KNOWN DEUTERIUM WAVE FUNCTION AND NEGLECTING SHADOWING. The mean P quoted in the table assumes the J/PSI energy equals the photon energy.
Cross sections, differential cross sections, and hyperon polarization results are presented for the reactions K¯0p→Λπ+ and K¯0p→Σ0π+ in the momentum interval 1 to 12 GeV/c. Emphasis is placed on the comparison of Λ and Σ channels, and on the momentum dependences of the data. In particular, the Λ polarization data are consistent with being independent of energy above 2 GeV/c; and the slopes of the forward cross sections are found to increase toward the slope values for the line-reversed reactions πp→K(Λ,Σ) as energy increases.
No description provided.
No description provided.
RESONANCE REGION CROSS SECTIONS.
The differential cross sections for KL0p→KS0p scattering are presented in several momentum intervals between 1 and 10 GeVc. The data are strongly peaked in the forward direction, characteristic of a large s-channel helicity-nonflip scattering amplitude in this reaction, and a distinct break in the differential cross section occurs at |t|=0.3 GeV2. The phase of the forward scattering amplitude, φ, is consistent with being independent of momentum. The average value of the phase, φ=−133.9±4.0∘, corresponds to a Regge trajectory α(0)=0.49±0.05 in agreement with the canonical ρ, ω0 Regge intercept, α(0)∼0.5. However, this result disagrees with the Regge trajectory determined from the energy dependence of the forward cross section, α(0)=0.30±0.03, indicating a breaking of the Regge phase-energy relation. Comparisons of KL0p→KS0p and π−p→π0n scattering data reveal substantial differences in the energy dependence of the differential cross sections. Comparisons to KN charge-exchange data then suggest that direct-channel (absorption) effects may explain the differences in πN and KN channels.
No description provided.
No description provided.
No description provided.
Backward scattering in the reaction KL0p→pKS0 is studied in the momentum interval 1.0 to 7.5 GeV/c. Comparison of KL0p→pKS0 and K+p→pK+ backward scattering, where respectively Σ exchange and Λ plus Σ exchange can contribute in the u channel, reveals that dσdΩ180°(KL0p→pKS0dσdΩ180°(K+p→pK+) above the resonance region. This result provides direct evidence for the dominance of the Λ contribution over the Σ contribution in the K+p→pK+ production amplitude.
No description provided.
The elastic photoproduction cross sections for ρ and ϕ mesons from protons have been measured from 30 to 180 GeV. The energy dependences agree well with predictions made by using vector-meson dominance and an additive quark model. The ρ cross section is approximately constant with energy while the ϕ cross section rises from 0.5 to 0.7 μb with increasing energy.
No description provided.
Total and differential cross sections are presented for the reaction KL 0p→KS 0p from 1.3 to 8.0 GeVc as measured in an exposure of the Stanford Linear Accelerator Center 40-in. hydrogen bubble chamber to a neutral beam. The forward points of dσ(KL 0p→KS 0p)dt together with K+n and K−n total cross sections are used to determine the intercept of the effective Regge trajectory, α(0)=0.47±0.09, and the regeneration phase ϕf=−43∘±8∘.
No description provided.
FULL T REGION.
FULL T REGION.
Elastic ω-meson photoproduction on protons has been measured from 46 to 180 GeV. The cross section is approximately constant with photon energy and averages 1.10 ± 0.08 μb. The t dependence of the differential cross section is consistent with A exp(bt), where b=8.4±0.7 GeV−2. The photon-omega coupling constant, obtained from a normalization of hadron elastic-scattering cross sections to the photoproduction data of this experiment (with use of vector-meson dominance and an additive quark model), is γω24π=5.4±0.4.
THE QUOTED STATISTICAL ERRORS INCLUDE THE UNCERTAINTY IN THE CORRECTION FOR INELASTIC EVENTS. AVERAGE CROSS SECTION IS 1.10 +- 0.08 MUB.
EXPONENTIAL FIT TO DIFFERENTIAL CROSS SECTION.
No description provided.
The photon total cross section on protons has been measured with high precision in the Fermilab tagged-photon beam for photon energies from 18 to 185 GeV. The cross section decreases to a broad minimum near 40 GeV, and then rises by about 4 μb over the remainder of the range. A ρ+ω+ϕ vector-dominance model (normalized to low-energy data) falls below the high-energy results by 2 to 6 μb, suggesting a contribution from charm-anticharm states.
No description provided.
No description provided.
We measure the relative cross sections for D mesons produced in interactions of π− and π+ beams with targets of Be, Cu, Al, and W. The measurement is based on 1400 fully reconstructed decays of the types D0→K−π+, D+→K−π+π+, and charge conjugates. We find that the cross section for the production of both neutral and charged D’s by either π− or π+ is well fitted by the form Aα where A is the atomic mass and α=1.00±0.05±0.02, where the errors are statistical and systematic, respectively. There is no significant dependence of α on the transverse or longitudinal momentum of the D meson or on the charge of either the incident pion or the produced D mesons.
No description provided.
We have studied the photoproduction of Jψ mesons on H, Be, Fe, and Pb targets using real photons at a mean energy of 120 GeV. The pT2 spectra were used to separate the coherent diffractive signals from the incoherent signals. Parametrizing the per-nucleus cross sections in terms of power-law dependences, Aα, we find that αcoh=1.40±0.06±0.04 for the coherent diffractive signals and αincoh=0.94±0.02±0.03 for the incoherent signals.
CROSS-SECTIONS ARE RELATIVE TO THAT FOR INCOHERENT J/PSI PRODUCTION OFF BERYLLIUM.