Using the CLEO II detector at CESR, we have observed two charmed states, where the higher mass state decays to D 0 π + and to D ∗0 π + , while the lower mass state decays to D ∗0 π + , but not to D 0 π + . The masses and widths were measured to be 2425±2±2 MeV/c 2 and 26 −7−4 +8+4 MeV/c 2 for the lower mass state, and 2463±3±3 MeV/c 2 and 27 −8−5 +11+5 MeV/c 2 for the higher mass state. Properties of these states, including their decay angular distributions and spin-parity assignments have been studied. The results of this analysis support the identification of these states as the charged L = 1 D 1 (2420) + and D 2 ∗ (2460) + , respectively. The isospin mass splittings between these states and their neutral partners have also been measured. This is the first full reconstruction of any decay mode of the D 1 (2420) + and the first observation of the decay of D 2 ∗ (2460) + to D ∗0 π + .
CONST(NAME=EPS) is the parameter of the Peterson fragmentation function (C.Peterson et al., PR D27, 105 (1983)) D(N)/D(Z) = FD(Z) = const * (1/Z)*1/(1 - (1/Z)-CONST(NAME=EPS)/(1-Z))**2. Charged conjugate states are undestood.
A measurement of the cross section for the combined two-photon production of charged pion and kaon pairs is performed using 1.2~$\rm fb^{-1}$ of data collected by the CLEO~II detector at the Cornell Electron Storage Ring. The cross section is measured at invariant masses of the two-photon system between 1.5 and 5.0 GeV/$c^2$, and at scattering angles more than $53^\circ$ away from the $\gamma\gamma$ collision axis in the $\gamma\gamma$ center-of-mass frame. The large background of leptonic events is suppressed by utilizing the CsI calorimeter in conjunction with the muon chamber system. The reported cross section is compared with leading order QCD models as well as previous experiments. In particular, although the functional dependence of the measured cross section disagrees with leading order QCD at small values of the two-photon invariant mass, the data show a transition to perturbative behavior at an invariant mass of approximately 2.5 GeV/$c^2$. hardcopies with figures can be obtained by writing to to: Pam Morehouse preprint secretary Newman Lab Cornell University Ithaca, NY 14853 or by sending mail to: preprints@lns62.lns.cornell.edu
There is an additional 10 pct point-to-point systematic error as well as the overall uncertainty given above.
The CLEO II detector is used to search for the production of χc2 states in two-photon interactions. We use the signature χc2→γJ/ψ→γl+l− with l=e,μ. Using 1.49 fb−1 of data taken with beam energies near 5.29 GeV, the two-photon width of the χc2 is determined to be Γ(χc2→γγ)=1.08±0.30(stat)±0.26(syst) keV, in agreement with predictions from perturbative QCD.
Results below were obtained usign J/psi from-factors in the two photon propogators, and assumes that only transversely polarized photons are significant inthe production of the CHI/C2(1P) state.
No description provided.
A measurement of the cross section for γγ→pp¯ is performed at two-photon center-of-mass energies between 2.00 and 3.25 GeV. These results are obtained using e+e−→e+e−pp¯ events selected from 1.31 fb−1 of data taken with the CLEO II detector. The measured cross section is in reasonable agreement with previous measurements and is in excellent agreement with recent calculations based on a diquark model. However, leading order QCD calculations performed using the Brodsky-Lepage formalism are well below the measured cross section.
Data read from graph.
Data read from graph.
Data read from graph.
We have measured the B0B¯0 mixing probability, χd, using a sample of 965 000 BB¯ pairs from Υ(4S) decays. Counting dilepton events, we find χd=0.157±0.016±0.018−0.021+0.028. Using tagged B0 events, we find χd=0.149±0.023±0.019±0.010. The first (second) error is statistical (systematic). The third error reflects a ±15% uncertainty in the assumption, made in both cases, that charged and neutral B pairs contribute equally to dilepton events. We also obtain a limit on the CP impurity in the Bd0 system, ‖Re(εB0)‖<0.045 at 90% C.L.
No description provided.
Mixing parameter from counting dilepton events. CONST(N=MIXING PARAM) = 1/(1 - LAMBDA(C,N)) * (N(2LEPTON+) + N(2LEPTON-))/(N(LEPTON+,LEPTON-) + N(2LEPTON+) + N(2LEPTON-)). LAMBDA(C,N) is the fraction of dilepton events coming from B+B- decays, LAMBDA(C,N) = f(B+)*Br(B+)**2/(f(B+)*Br(B+)**2 + f(B0)*Br(B0)**2), where f(B+),f(B0) are the productiron fractions of the charged and neutral B's at the UPSI(4S), and Br(B+), Br(B0) are the semileptonic brancing fractions.
Mixing parameter from tagged B0 events.
Measurements of the e+e− cross section above BB¯ threshold are reported. Structures are observed which could be the ϒ(5S) and ϒ(6S) resonances. The masses and widths are given and compared with various potential-model predictions. Average charged multiplicities and inclusive lepton yields are also presented.
No description provided.
We report measurements of single-particle inclusive spectra and two-particle correlations in decays of the Υ(1S) resonance and in nonresonant annihilations of electrons and positrons at center-of-mass energy 10.49 GeV, just below BB¯ threshold. These data were obtained using the CLEO detector at the Cornell Electron Storage Ring (CESR) and provide information on the production of π, K, ρ, K*, φ, p, Λ, and Ξ in quark and gluon jets. The average multiplicity of hadrons per event for upsilon decays (compared with continuum annihilations) is 11.4 (10.5) pions, 2.4 (2.2) kaons, 0.6 (0.5) ρ0, 1.2 (0.8) K*, 0.6 (0.4) protons and antiprotons, 0.15 (0.08) φ, 0.19 (0.07) Λ and Λ¯, and 0.016 (0.005) Ξ− and Ξ¯ +. We have also seen evidence for η and f0 production. The most significant differences between upsilon and continuum final states are (1) the inclusive energy spectra fall off more rapidly with increasing particle energy in upsilon decays, (2) the production of heavier particles, especially baryons, is not as strongly suppressed in upsilon decays, and (3) baryon and antibaryon are more likely to be correlated at long range in upsilon decay than in continuum events.
No description provided.
No description provided.
VALUES AT X = 0.10 ARE ACTUALLY AP RATES DOUBLED.
We report measurements from the CLEO detector of the rate of Ξ and Λ production in e+e− interactions in the upsilon region. Hyperon production from the decay of the ϒ(1s) is compared with continuum e+e− data. The ratio of the production rates of Λ (and Λ―) to K0 (and K―0) on the ϒ(1s) is 0.21 ± 0.03, much larger than in the continuum, 0.07 ± 0.01. The ratios of the production rates of the Ξ and Λ are comparable, 0.10±0.02 [ϒ(1S)] and 0.07 ± 0.02 (continuum). We discuss some implications of the data for gluon and quark fragmentation models.
CONTINUUM IS ECM 10.38 TO 10.64 GEV.
No description provided.
We have used the momentum spectrum of leptons produced in semileptonic B-meson decays to set a 90%-confidence-level upper limit on Γ(b→ulν)Γ(b→clν) of 4%. We also measure the semileptonic branching fractions of the B meson to be (12.0±0.7±0.5)% for electrons and (10.8±0.6±1.0)% for muons.
No description provided.
No description provided.
We report measurements made with the CLEO detector at the Cornell Electron Storage Ring (CESR) of the total cross section for e+e−→hadrons at the ϒ(1S), ϒ(2S), and ϒ(3S), and in the nearby nonresonant continuum. We find R=3.77±0.06 (statistical) ± 0.24 (systematic) for the ratio of the nonresonant hadronic cross section to the cross section for muon-pair production at a center-of-mass total energy W=10.4 GeV. For the leptonic decay widths Γee of the ϒ(1S), ϒ(2S), and ϒ(3S) we obtain 1.30±0.05±0.08, 0.52±0.03±0.04, and 0.42±0.04±0.03 keV, respectively.
No description provided.