Presented are the first measurements of the transverse single-spin asymmetries ($A_N$) for neutral pions and eta mesons in $p$+Au and $p$+Al collisions at $\sqrt{s_{_{NN}}}=200$ GeV in the pseudorapidity range $|\eta|<$0.35 with the PHENIX detector at the Relativistic Heavy Ion Collider. The asymmetries are consistent with zero, similar to those for midrapidity neutral pions and eta mesons produced in $p$+$p$ collisions. These measurements show no evidence of additional effects that could potentially arise from the more complex partonic environment present in proton-nucleus collisions.
Data from Figure 2 (a) of the $\pi^{0}$ transverse single-spin asymmetry in $\sqrt{s_{NN}}=200$ GeV $p^{\uparrow}+$Au and $p^{\uparrow}+$Al collisions as a function of $p_{T}$.
Data from Figure 2 (b) of the $\eta$ transverse single-spin asymmetry in $\sqrt{s_{NN}}=200$ GeV $p^{\uparrow}+$Au and $p^{\uparrow}+$Al collisions as a function of $p_{T}$.
Polarized proton-proton collisions provide leading-order access to gluons, presenting an opportunity to constrain gluon spin-momentum correlations within transversely polarized protons and enhance our understanding of the three-dimensional structure of the proton. Midrapidity open-heavy-flavor production at $\sqrt{s}=200$ GeV is dominated by gluon-gluon fusion, providing heightened sensitivity to gluon dynamics relative to other production channels. Transverse single-spin asymmetries of positrons and electrons from heavy-flavor hadron decays are measured at midrapidity using the PHENIX detector at the Relativistic Heavy Ion Collider. These charge-separated measurements are sensitive to gluon correlators that can in principle be related to gluon orbital angular momentum via model calculations. Explicit constraints on gluon correlators are extracted for two separate models, one of which had not been constrained previously.
Data from Figure 1 of open heavy flavor $e^{\pm}$ transverse single-spin asymmetries in transversely polarized p+p collisions as a function of $p_{T}$.
The exclusive omega electroproduction off the proton was studied in a large kinematical domain above the nucleon resonance region and for the highest possible photon virtuality (Q2) with the 5.75 GeV beam at CEBAF and the CLAS spectrometer. Cross sections were measured up to large values of the four-momentum transfer (-t < 2.7 GeV2) to the proton. The contributions of the interference terms sigma_TT and sigma_TL to the cross sections, as well as an analysis of the omega spin density matrix, indicate that helicity is not conserved in this process. The t-channel pi0 exchange, or more generally the exchange of the associated Regge trajectory, seems to dominate the reaction gamma* p -> omega p, even for Q2 as large as 5 GeV2. Contributions of handbag diagrams, related to Generalized Parton Distributions in the nucleon, are therefore difficult to extract for this process. Remarkably, the high-t behaviour of the cross sections is nearly Q2-independent, which may be interpreted as a coupling of the photon to a point-like object in this kinematical limit.
Total cross sections and interference terms (TT and TL).
Differential cross sections DSIG/DT for Q**2 = 1.725 GeV**2 and W = 2.77 GeV.
Differential cross sections DSIG/DT for Q**2 = 1.752 GeV**2 and W = 2.48 GeV.
Correlations in the azimuthal angle between the two largest transverse momentum jets have been measured using the D0 detector in pp-bar collisions at a center-of-mass energy sqrt(s)=1.96 TeV. The analysis is based on an inclusive dijet event sample in the central rapidity region corresponding to an integrated luminosity of 150 pb-1. Azimuthal correlations are stronger at larger transverse momenta. These are well-described in perturbative QCD at next-to-leading order in the strong coupling constant, except at large azimuthal differences where soft effects are significant.
Distribution for the maxPT jet from 75 to 100 GeV.
Distribution for the maxPT jet from 100 to 130 GeV.
Distribution for the maxPT jet from 130 to 180 GeV.
The interaction of virtual photons is investigated using the reaction e+e- -> e+e- hadrons based on data taken by the OPAL experiment at e+e- centre-of-mass energies sqrt(s_ee)=189-209 GeV, for W>5 GeV and at an average Q^2 of 17.9 GeV^2. The measured cross-sections are compared to predictions of the Quark Parton Model (QPM), to the Leading Order QCD Monte Carlo model PHOJET to the NLO prediction for the reaction e+e- -> e+e-qqbar, and to BFKL calculations. PHOJET, NLO e+e- -> e+e-qqbar, and QPM describe the data reasonably well, whereas the cross-section predicted by a Leading Order BFKL calculation is too large.
Total cross section in the given phase space and assuming ALPHA = 1/137.
Differential cross section as a function of X where X is the maximum value of X1 or X2, the upper and lower vertex values.
Differential cross section as a function of Q**2 where Q**2 is the maximum value of Q1**2 or Q2**2, the upper and lower vertex values.
We present measurements of the b-bbar production cross section and angular correlations using the D0 detector at the Fermilab Tevatron p-pbar Collider operating at sqrt(s) = 1.8 TeV. The b quark production cross section for |y(b)|<1.0 and p_T(b)>6 GeV/c is extracted from single muon and dimuon data samples. The results agree in shape with the next-to-leading order QCD calculation of heavy flavor production but are greater than the central values of these predictions. The angular correlations between b and bbar quarks, measured from the azimuthal opening angle between their decay muons, also agree in shape with the next-to-leading order QCD prediction.
No description provided.
The errors are combinations of statistical and systematic uncertainties.
The distribution of MU+ MU- azimuthal angle difference.
This study reports the first measurement of the azimuthal decorrelation between jets with pseudorapidity separation up to five units. The data were accumulated using the D\O\ detector during the 1992--1993 collider run of the Fermilab Tevatron at $\sqrt{s}=$ 1.8 TeV. These results are compared to next--to--leading order (NLO) QCD predictions and to two leading--log approximations (LLA) where the leading--log terms are resummed to all orders in $\alpha_{\scriptscriptstyle S}$. The final state jets as predicted by NLO QCD show less azimuthal decorrelation than the data. The parton showering LLA Monte Carlo {\small HERWIG} describes the data well; an analytical LLA prediction based on BFKL resummation shows more decorrelation than the data.
Distribution of the pseudorapidity interval of the two jets at the extremes of pseudorapidity. Data are read from the graph and the errors are statistical only.
Normalized distributions of the azimuthal angle difference of the two jets at the extremes of pseudorapidity in 3 pseudorapididity difference intervals. Data are read from the graph and the errors are statistical only.
The correlation between the PHI and ETARAP difference distributions as used in the analysis.Data are read from the graph and the errors include the statiucal and un-correlated systematic errors added in quadrature.
The particle flow distributions in the event plane of 3-jet\((e^ +e^ -\to q\bar qg)\) and of radiative 2-jet\((e^ +e^ -\to q\bar q\gamma )\) events are compared at a centre of mass energy of 35 GeV. The number of particles in the angular region opposite to the gluon in\(q\bar qg\) events is found to be significantly reduced relative to the number of particles in the region opposite to the hard photon in\(q\bar q\gamma \) events. This depletion is expected from the “string effect” observed in 3-jet events. It can be explained within the framework of QCD as arising from soft gluon interference.
Data requested from authors.