Date

Results on Elastic Cross Sections in Proton-Proton Collisions at $\sqrt{s} = 510$ GeV with the STAR Detector at RHIC

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 852 (2024) 138601, 2024.
Inspire Record 2704122 DOI 10.17182/hepdata.144920

We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy $\sqrt{s}=510$ GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range $0.23 \leq -t \leq 0.67$ GeV$^2$. We find that a constant slope $B$ does not fit the data in the aforementioned $t$ range, and we obtain a much better fit using a second-order polynomial for $B(t)$. The $t$ dependence of $B$ is determined using six subintervals of $t$ in the STAR measured $t$ range, and is in good agreement with the phenomenological models. The measured elastic differential cross section $\mathrm{d}\sigma/\mathrm{dt}$ agrees well with the results obtained at $\sqrt{s} = 546$ GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR $t$-range is $\sigma^\mathrm{fid}_\mathrm{el} = 462.1 \pm 0.9 (\mathrm{stat.}) \pm 1.1 (\mathrm {syst.}) \pm 11.6 (\mathrm {scale})$~$\mu\mathrm{b}$.

2 data tables

Top panel: The $pp$ elastic differential cross section $d\sigma/dt$ fitted with an exponential $A e^{-B(t)|t|}$. Bottom panel: Residuals (Data - Fit)/Error. Uncertainties on the data points are smaller than the symbol size. The vertical scale uncertainty of 2.5% is not included in in the full error.

Results of the exponential function $A e^{-B(t)|t|}$ fit to the elastic differential cross section data as well as the integrated fiducial cross section are listed. Also listed are the corresponding values of the statistical and systematic uncertainties. The scale (luminosity and trigger efficiency) uncertainty of 2.5% applicable to the fit parameter $A$ and fiducial cross section $\sigma^\mathrm{fid}_\mathrm{el}$ is not included in the full error.


First measurement of the $|t|$-dependence of incoherent J/$\psi$ photonuclear production

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 132 (2024) 162302, 2024.
Inspire Record 2658375 DOI 10.17182/hepdata.146880

The first measurement of the cross section for incoherent photonuclear production of J/$\psi$ vector mesons as a function of the Mandelstam $|t|$ variable is presented. The measurement was carried out with the ALICE detector at midrapidity, $|y|<0.8$, using ultra-peripheral collisions of Pb nuclei at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV. This rapidity interval corresponds to a Bjorken-$x$ range $(0.3-1.4)\times 10^{-3}$. Cross sections are given in five $|t|$ intervals in the range $0.04<|t|<1$ GeV$^2$ and compared to the predictions by different models. Models that ignore quantum fluctuations of the gluon density in the colliding hadron predict a $|t|$-dependence of the cross section much steeper than in data. The inclusion of such fluctuations in the same models provides a better description of the data.

1 data table

|t|-dependence of incoherent J/Psi photonuclear production cross section in Pb-Pb UPCs measured at midrapidity, |y| < 0.8


$\pi^{-}$C collisions with backward proton emission at 4 and 40 GeV/c

Angelov, N. ; Lutpullaev, S.L. ; Nikitina, V.F. ; et al.
Sov.J.Nucl.Phys. 33 (1981) 98-99, 1981.
Inspire Record 1392857 DOI 10.17182/hepdata.17814

None

13 data tables

PROTONS MOMENTA LIE IN LAB BACKWARD HEMISPHERE.

No description provided.

No description provided.

More…

Inclusive cross sections, charge ratio and double-helicity asymmetries for $\pi^+$ and $\pi^-$ production in $p$$+$$p$ collisions at $\sqrt{s}$=200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 91 (2015) 032001, 2015.
Inspire Record 1315330 DOI 10.17182/hepdata.71403

We present the midrapidity charged pion invariant cross sections and the ratio of $\pi^-$-to-$\pi^+$ production ($5<p_T<13$ GeV/$c$), together with the double-helicity asymmetries ($5<p_T<12$ GeV/$c$) in polarized $p$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. The cross section measurements are consistent with perturbative calculations in quantum chromodynamics within large uncertainties in the calculation due to the choice of factorization, renormalization, and fragmentation scales. However, the theoretical calculation of the ratio of $\pi^-$-to-$\pi^+$ production when considering these scale uncertainties overestimates the measured value, suggesting further investigation of the uncertainties on the charge-separated pion fragmentation functions is needed. Due to cancellations of uncertainties in the charge ratio, direct inclusion of these ratio data in future parameterizations should improve constraints on the flavor dependence of quark fragmentation functions to pions. By measuring charge-separated pion asymmetries, one can gain sensitivity to the sign of $\Delta G$ through the opposite sign of the up and down quark helicity distributions in conjunction with preferential fragmentation of positive pions from up quarks and negative pions from down quarks. The double-helicity asymmetries presented are sensitive to the gluon helicity distribution over an $x$ range of $\sim$0.03--0.16.

3 data tables

Invariant cross section for $\pi^+$ and $\pi^-$ hadrons, as well as the statistical and systematic uncertainties. In addition, there is an absolute scale uncertainty of 9.6$\%$.

Double-helicity asymmetries and statistical uncertainties for $\pi^+$ and $\pi^-$ hadrons. The primary systematic uncertainties, which are fully correlated between points, are $1.4\times10^{-3}$ from relative luminosity and a $^{+7.0\%}_{-7.7\%}$ scaling uncertainty from beam polarization.

Ratio of charged pion cross section, as shown in Fig.6.


Low-mass vector-meson production at forward rapidity in $p+p$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 90 (2014) 052002, 2014.
Inspire Record 1296835 DOI 10.17182/hepdata.64159

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low mass vector meson, $\omega$, $\rho$, and $\phi$, production through the dimuon decay channel at forward rapidity ($1.2<|y|<2.2$) in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. The differential cross sections for these mesons are measured as a function of both $p_T$ and rapidity. We also report the integrated differential cross sections over $1<p_T<7$ GeV/$c$ and $1.2<|y|<2.2$: $d\sigma/dy(\omega+\rho\rightarrow\mu\mu) = 80 \pm 6 \mbox{(stat)} \pm 12 \mbox{(syst)}$ nb and $d\sigma/dy(\phi\rightarrow\mu\mu) = 27 \pm 3 \mbox{(stat)} \pm 4 \mbox{(syst)}$ nb. These results are compared with midrapidity measurements and calculations.

3 data tables

Differential cross sections of (OMEGA + RHO) and PHI as functions of PT. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.

Differential cross sections of (OMEGA + RHO) and PHI as functions of rapidity. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.

N(PHI) / ( N(OMEGA) + N(RHO) ) as a function of PT. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.


Precision measurement of charged pion and kaon multiplicities in electron-positron annihilation at Q = 10.52 GeV

The Belle collaboration Leitgab, M. ; Seidl, R. ; Grosse Perdekamp, M. ; et al.
Phys.Rev.Lett. 111 (2013) 062002, 2013.
Inspire Record 1216515 DOI 10.17182/hepdata.62276

Measurements of inclusive differential cross sections for charged pion and kaon production in electron-positron annihilation have been carried out at a center-of-mass energy of Q = 10.52 GeV. The measurements were performed with the Belle detector at the KEKB electron-positron collider using a data sample containing 113 million e+e- -> qqbar events, where q={u,d,s,c}. We present charge-integrated differential cross sections d\sigma_h+-/dz for h+- = pi+-, K+- as a function of the relative hadron energy z = 2*E_h / sqrt{s} from 0.2 to 0.98. The combined statistical and systematic uncertainties for pi+- (K+-) are 4% (4%) at z ~ 0.6 and 15% (24%) at z ~ 0.9. The cross sections are the first measurements of the z-dependence of pion and kaon production for z > 0.7 as well as the first precision cross section measurements at a center-of-mass energy far below the Z^0 resonance used by the experiments at LEP and SLC.

1 data table

Measured charged-integrated differential cross sections for charged pion and kaon production as a function of the fractional hadron energy Z (=2*Eh/sqrt(s)).


Measurement of the inclusive isolated prompt photon cross section in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Rev.D 83 (2011) 052005, 2011.
Inspire Record 882463 DOI 10.17182/hepdata.57465

A measurement of the cross section for the inclusive production of isolated prompt photons in pp collisions at a centre-of-mass energy sqrt(s) = 7TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<|eta|<1.81 in the transverse energy range 15 < E_T <100 GeV. The results are based on an integrated luminosity of 880 nb-1, collected with the ATLAS detector at the Large Hadron Collider. Photon candidates are identified by combining information from the calorimeters and from the inner tracker. Residual background in the selected sample is estimated from data based on the observed distribution of the transverse isolation energy in a narrow cone around the photon candidate. The results are compared to predictions from next-to-leading order perturbative QCD calculations.

3 data tables

The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range < 0.6.

The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 0.6 to 1.37.

The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 1.52 to 1.81.


Near-threshold Photoproduction of Phi Mesons from Deuterium

Qian, X. ; Chen, W. ; Gao, H. ; et al.
Phys.Lett.B 696 (2011) 338-342, 2011.
Inspire Record 875788 DOI 10.17182/hepdata.56870

We report the first measurement of the differential cross section on $\phi$-meson photoproduction from deuterium near the production threshold for a proton using the CLAS detector and a tagged-photon beam in Hall B at Jefferson Lab. The measurement was carried out by a triple coincidence detection of a proton, $K^+$ and $K^-$ near the theoretical production threshold of 1.57 GeV. The extracted differential cross sections $\frac{d\sigma}{dt}$ for the initial photon energy from 1.65-1.75 GeV are consistent with predictions based on a quasifree mechanism. This experiment establishes a baseline for a future experimental search for an exotic $\phi$-N bound state from heavier nuclear targets utilizing subthreshold/near-threshold production of $\phi$ mesons.

1 data table

Differential cross section as a function of ABS(T-TMIN).


Measurement of eta eta production in two-photon collisions

The Belle collaboration Uehara, S. ; Watanabe, Y. ; Nakazawa, H. ; et al.
Phys.Rev.D 82 (2010) 114031, 2010.
Inspire Record 862260 DOI 10.17182/hepdata.56262

We report the first measurement of the differential cross section for the process gamma gamma --> eta eta in the kinematic range above the eta eta threshold, 1.096 GeV < W < 3.8 GeV over nearly the entire solid angle range, |cos theta*| <= 0.9 or <= 1.0 depending on W, where W and theta* are the energy and eta scattering angle, respectively, in the gamma gamma center-of-mass system. The results are based on a 393 fb^{-1} data sample collected with the Belle detector at the KEKB e^+ e^- collider. In the W range 1.1-2.0 GeV/c^2 we perform an analysis of resonance amplitudes for various partial waves, and at higher energy we compare the energy and the angular dependences of the cross section with predictions of theoretical models and extract contributions of the chi_{cJ} charmonia.

43 data tables

Total cross section.

Angular dependence of the differential cross section for the W range 1.096 to 1.120 GeV.

Angular dependence of the differential cross section for the W range 1.120 to 1.160 GeV.

More…

Differential cross section of gamma n to K+ Sigma- on bound neutrons with incident photons from 1.1 to 3.6 GeV

The CLAS collaboration Pereira, S.Anefalos ; Mirazita, M. ; Rossi, P. ; et al.
Phys.Lett.B 688 (2010) 289-293, 2010.
Inspire Record 841145 DOI 10.17182/hepdata.38239

Differential cross sections of the reaction gamma d to K+ Sigma- (p) have been measured with the CLAS detector at Jefferson Lab using incident photons with energies between 1.1 and 3.6 GeV. This is the first complete set of strangeness photoproduction data on the neutron covering a broad angular range. At energies close to threshold and up to E_gamma ~ 1.8 GeV, the shape of the angular distribution is suggestive of the presence of s-channel production mechanisms. For E_gamma > 1.8 GeV, a clear forward peak appears and becomes more prominent as the photon energy increases, suggesting contributions from t-channel production mechanisms. These data can be used to constrain future analysis of this reaction.

25 data tables

Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.15 GeV.. Errors contain both statistics and systematics.

Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.25 GeV.. Errors contain both statistics and systematics.

Differential cross section for the reaction GAMMA DEUT --> K+ SIGMA-(P) at incident photon energy 1.35 GeV.. Errors contain both statistics and systematics.

More…