Date

Real Part of the Proton-Proton Forward Scattering Amplitude from 50-GeV to 400-GeV.

Bartenev, V. ; Carrigan, Richard A. ; Chiang, I-Hung ; et al.
Phys.Rev.Lett. 31 (1973) 1367-1370, 1973.
Inspire Record 81733 DOI 10.17182/hepdata.21379

From measurements of proton-proton elastic scattering at very small momentum transfers where the nuclear and Coulomb amplitudes interfere, we have deduced values of ρ, the ratio of the real to the imaginary forward nuclear amplitude, for energies from 50 to 400 GeV. We find that ρ increases from -0.157 ± 0.012 at 51.5 GeV to +0.039 ± 0.012 at 393 GeV, crossing zero at 280 ± 60 GeV.

1 data table

No description provided.


Experimental verification of the Kramers-Kronig relation at high energy

Alvensleben, H. ; Becker, U. ; Biggs, P.J. ; et al.
Phys.Rev.Lett. 30 (1973) 328-332, 1973.
Inspire Record 84536 DOI 10.17182/hepdata.21393

The real part of the forward amplitude for Compton scattering on protons was measured through the interference between the Compton and Bethe-Heithler amplitudes by detecting the zero-degree electron pairs asymmetrically. The measurement was made at an average photon energy of 〈k〉=2.2 GeV, and an average momentum transfer to the recoil proton 〈t〉=−0.027 (GeV/c)2. The result confirms the prediction of the Kramers-Kronig relation.

1 data table

No description provided.


Systematic study of pi+- p, k+- p, p p, and anti-p p forward elastic scattering from 3 to 6 gev/c

Ambats, I. ; Ayres, D.S. ; Diebold, R. ; et al.
Phys.Rev.D 9 (1974) 1179-1209, 1974.
Inspire Record 92992 DOI 10.17182/hepdata.3409

Measurements of π±p, K±p, pp, and p¯p elastic scattering are presented for incident momenta of 3, 3.65, 5, and 6 GeVc and momentum transfers typically 0.03 to 1.8 GeV2. The angle and momentum of the scattered particle were measured with the Argonne Effective Mass Spectrometer for 300 000 events, yielding 930 cross-section values with an uncertainty in absolute normalization of ±4%. Only the K+ and proton data show any significant change in slope of the forward diffraction peak with incident momentum. The particle-antiparticle crossover positions are consistent with no energy dependence, average values being 0.14 ± 0.03, 0.190 ± 0.006, and 0.162 ± 0.004 GeV2 for π' s, K' s, and protons, respectively; these errors reflect both statistics and the ±1.5% uncertainty in particle-antiparticle relative normalization. Differences between particle and antiparticle cross sections isolate interference terms between amplitudes of opposite C parity in the t channel; these differences indicate that the imaginary part of the odd-C nonflip-helicity amplitude has a J0(r(−t)12) structure for −t<0.8 GeV2, as predicted by strong absorption models. The cross-section differences for K± and proton-antiproton are in qualitative agreement with the predictions of ω universality, the agreement improving with increasing energy. The corresponding quark-model predictions relating the π± and K± differences failed by more than a factor of 2. We have combined our π± cross sections with other data to better determine the πN amplitudes in a model-independent way; results of this analysis are presented.

18 data tables

No description provided.

No description provided.

No description provided.

More…

A Study of K+ pi- Elastic Scattering in the Reaction K+ n --> K+ pi- p Between 2.0-GeV/c and 3.0-GeV/c

Baker, S.L. ; Banerjee, S. ; Campbell, J.R. ; et al.
Nucl.Phys.B 99 (1975) 211, 1975.
Inspire Record 655 DOI 10.17182/hepdata.31833

Results are given from a study of 15 518 events of the reaction K + d → K + π − pp. The K + π − spin density matrix and the constraints imposed on it by positivity have been studied. Analyses of K + π − → K + π − elastic scattering have been carried out using methods developed by Estabrooks and Martin and Ochs and Wagner for the analogous case of ππ scattering. Results are found to be in agreement with earlier K π scattering studies using the reaction K + p → K + π − Δ ++ at much higher energies. The S-wave scattering length is found to be in agreement with the prediction of current algebra.

1 data table

No description provided.


Systematic Study of K+- Charge Exchange from 3-GeV/c to 6-GeV/c

Diebold, R. ; Ayres, D.S. ; Greene, A.F. ; et al.
Phys.Rev.Lett. 32 (1974) 904, 1974.
Inspire Record 89016 DOI 10.17182/hepdata.21284

Differential cross sections for K−p→K¯0n and K+n→K0p have been measured at 3, 4, and 6 GeV/c using a data sample of 6000 events. Contrary to simple exchange-degenerate models, the ratio of K+ to K− cross sections was found to be approximately 1.35, with little dependence on either s or t. Both reactions show a shallow dip near the forward direction, suggesting the importance of spin-flip amplitudes.

3 data tables

No description provided.

No description provided.

LARGE -T CONTRIBUTIONS (TYPICALLY 12 PCT) ESTIMATED FROM BUBBLE-CHAMBER DATA.


phi Meson Production in pi- p and K- p Interactions from 3-GeV/c to 6-GeV/c

Ayres, D.S. ; Diebold, R. ; Greene, A.F. ; et al.
Phys.Rev.Lett. 32 (1974) 1463, 1974.
Inspire Record 89228 DOI 10.17182/hepdata.51356

Cross sections and density-matrix elements for π−p→ϕn have been measured for - −t≲1.5 GeV2 at 3, 4, 5, and 6 GeV/c, using the Argonne effective-mass spectrometer to observe the decay ϕ(1019)→K+K−. This is the first observation of the reaction in this energy range. The remarkably flat differential cross section at 4 GeV/c and the strong energy dependence suggest a production mechanism not normally seen at these energies. Data on K−p→ϕΛ and K−p→ϕΣ0 from the same experiment are also presented.

2 data tables

No description provided.

No description provided.


Coherent K0(S) Regeneration in Hydrogen and Deuterium from 3.5-GeV/c to 10.5-GeV/c

Freytag, D. ; Schultz, C. ; Patel, P. ; et al.
Phys.Rev.Lett. 35 (1975) 412-416, 1975.
Inspire Record 103337 DOI 10.17182/hepdata.21146

The amplitude and phase for coherent regeneration in hydrogen and deuterium have been measured for six momentum bins in the range 3.5-10.5 GeV/c. Over this region the phase, ϕf, is consistent with being constant and has the value - 60°±8° for hydrogen and - 46°±8° for deuterium. Power-law fits of the form plabn for the amplitudes when combined with other data give n=−0.60±0.02 for hydrogen and n=−0.52±0.02 for deuterium.

2 data tables

No description provided.

NOTE PHASE IS HERE DEFINED AS THE PHASE OF I*AMP(NAME=REGEN) AND SO DIFFERS BY 90 DEG FROM USUAL DEFINITION.


Measurement of the Polarization Parameter in Small Angle Proton Proton Elastic Scattering at 6-GeV/c

Rust, D.R. ; Crittenden, R.R. ; Heinz, R.M. ; et al.
Phys.Lett.B 58 (1975) 114-116, 1975.
Inspire Record 99058 DOI 10.17182/hepdata.27810

The polarization parameter in pp elastic scattering was measured at 6 GeV/ c with fine t resolution for 0.02 < − t < 0.5 GeV 2 using a polarized proton beam with Effective Mass Spectrometer at the Zero Gradient Synchrotron. The polarization rises like √− t in the interval 0.02 < − t < 0.1 GeV 2 , No statistical significant structure was found in this region of momentum transfer.

1 data table

No description provided.


Observation of High Mass electron-Positron Pairs Produced in Proton Proton Collisions at the CERN ISR

Busser, F.W. ; Camilleri, L. ; Di Lella, L. ; et al.
Phys.Lett.B 56 (1975) 482, 1975.
Inspire Record 99170 DOI 10.17182/hepdata.27858

In an experiment performed at the CERN Intersecting Storage Rings (ISR), 11 e + e − pairs of high invariant mass value (> 2.5 GeV/c 2 ) have been observed. Of these events, 9 can be interpreted as arising from the reaction p + p → J (3.1) + anything. the cross-section for this reaction is estimated and compared with the result obtained at lower centre-of-mass energies.

1 data table

No description provided.


Measurement of the Proton-Neutron Elastic Scattering Polarization from 2-GeV/c to 6-GeV/c

Diebold, R. ; Ayres, D.S. ; Kramer, S.L. ; et al.
Phys.Rev.Lett. 35 (1975) 632, 1975.
Inspire Record 99560 DOI 10.17182/hepdata.21193

Left-right asymmetries from a deuterium target in a polarized-proton beam were observed with the Argonne National Laboratory effective-mass spectrometer. Results were obtained for both pp and pn elastic scattering from −t=0.15 to 1.0 GeV2 at 2, 3, 4, and 6 GeV/c. For −t≲0.6 GeV2 the pn polarization was found to have the same sign as for pp, but with faster energy dependence, the ratio P(pn)P(pp) at −t=0.3 GeV2 falling from 0.78±0.02 at 2 GeV/c to 0.22±0.03 at 6 GeV/c.

4 data tables

No description provided.

No description provided.

No description provided.

More…