We report the measurement of Lamda and Anti-Lamda yields and inverse slope parameters in d + Au collisions at sqrt(s_NN) = 200 GeV at forward and backward rapidities (y = +- 2.75), using data from the STAR forward time projection chambers. The contributions of different processes to baryon transport and particle production are probed exploiting the inherent asymmetry of the d + Au system. Comparisons to model calculations show that the baryon transport on the deuteron side is consistent with multiple collisions of the deuteron nucleons with gold participants. On the gold side HIJING based models do not describe the measured particle yields while models with initial state nuclear effects and/or hadronic rescattering do. The Multi-Chain Model can provide a good description of the net baryon density in d + Au collisions at RHIC, and the derived parameters of the model agree with those from nuclear collisions at lower energies.
(Color online) a) Invariant mass distribution of $\Lambda$ candidates on the deuteron side with estimated $K_{s}^{0}$ background distribution, b) and c) show the background subtracted $\Lambda$ and $\overline{\Lambda}$ invariant mass distributions. The widths of the peaks are due to the limited momentum resolution of the detectors, and are reproduced by simulations.
(Color online) a) Invariant mass distribution of $\Lambda$ candidates on the deuteron side with estimated $K_{s}^{0}$ background distribution, b) and c) show the background subtracted $\Lambda$ and $\overline{\Lambda}$ invariant mass distributions. The widths of the peaks are due to the limited momentum resolution of the detectors, and are reproduced by simulations.
(Color online) a) Invariant mass distribution of $\Lambda$ candidates on the deuteron side with estimated $K_{s}^{0}$ background distribution, b) and c) show the background subtracted $\Lambda$ and $\overline{\Lambda}$ invariant mass distributions. The widths of the peaks are due to the limited momentum resolution of the detectors, and are reproduced by simulations.
Using the data sets of 17.3 pb$^{-1}$ collected at $\sqrt{s}=$ 3.773 GeV and 6.5 pb$^{-1}$ collected at $\sqrt{s}=$ 3.650 GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 18 exclusive light hadron final states produced in $e^+e^-$ annihilation at the two energy points.
Observed cross sections.
Inclusive jet production (e+e- -> e+e- +jet+X) is studied in collisions of quasi-real photons radiated by the LEP beams at e+e- centre-of-mass energies sqrt see from 189 to 209 GeV. Jets are reconstructed using the kp jet algorithm. The inclusive differential cross-section is measured as a function of the jet transverse momentum, ptjet, in the range 5 <ptjet < 40 GeV for pseudo-rapidities, etaj, in the range -1.5 < etaj < 1.5. The results are compared to predictions of perturbative QCD in next-to-leading order in the strong coupling constant.
Inclusive jet cross section for the absolute jet pseudorapidity < 1.0.
Inclusive jet cross section for the absolute jet pseudorapidity < 1.5.
Differential cross sections for the reaction $\gamma p \to p \pi^0$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.
Differential cross section for indicent photon energy 675 MeV.
Differential cross section for indicent photon energy 725 MeV.
Differential cross section for indicent photon energy 775 MeV.
We report on the observed differences in production rates of strange and multi-strange baryons in Au+Au collisions at sqrts = 200 GeV compared to pp interactions at the same energy. The strange baryon yields in Au+Au collisions, then scaled down by the number of participating nucleons, are enhanced relative to those measured in pp reactions. The enhancement observed increases with the strangeness content of the baryon, and increases for all strange baryons with collision centrality. The enhancement is qualitatively similar to that observed at lower collision energy sqrts =17.3 GeV. The previous observations are for the bulk production, while at intermediate pT, 1 < pT< 4 GeV/c, the strange baryons even exceed binary scaling from pp yields.
Midrapidity E(i) as a function of $<N_{part}>$ for $\Lambda$, $\bar{\Lambda}$ ($|y| < 1.0$), $\Xi^{-}$, $\bar{\Xi}^{+}$ ($|y| < 0.75$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature. Grand Canonical Model arrows(values in brackets), for $\Lambda$ E(2.6) and T(165 MeV) for $\bar{\Lambda}$ E(2.2) and T(170 MeV), for $\Xi$ E(10.7) and T(165 MeV), for anti-$\Xi$ E(7.5) and T(170 MeV).
Midrapidity E(i) as a function of $<N_{part}>$ for $\Omega^{-}+\bar{\Omega}^{+}$ ($|y| < 0.75$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature.
Midrapidity E(i) as a function of $<N_{part}>$ for inclusive $p$ ($|y| < 0.5$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature.
The system created in non-central relativistic nucleus-nucleus collisions possesses large orbital angular momentum. Due to spin-orbit coupling, particles produced in such a system could become globally polarized along the direction of the system angular momentum. We present the results of Lambda and anti-Lambda hyperon global polarization measurements in Au+Au collisions at sqrt{s_NN}=62.4 GeV and 200 GeV performed with the STAR detector at RHIC. The observed global polarization of Lambda and anti-Lambda hyperons in the STAR acceptance is consistent with zero within the precision of the measurements. The obtained upper limit, |P_{Lambda,anti-Lambda}| <= 0.02, is compared to the theoretical values discussed recently in the literature.
(Color online) Invariant mass distribution for the $\Lambda$ (filled circles) and $\overline{\Lambda}$ (open squares) candidates after the quality cuts for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%).
(Color online) Global polarization of $\Lambda$–hyperons as a function of $\Lambda$ transverse momentum $p^{\Lambda}_{t}$. Filled circles show the results for Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV (centrality region 20-70%) and open squares indicate the results for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%). Only statistical uncertainties are shown.
(Color online) Global polarization of $\Lambda$–hyperons as a function of $\Lambda$ pseudorapidity $\eta^{\Lambda}$. Filled circles show the results for Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV (centrality region 20-70%). A constant line fit to these data points yields $P_{\Lambda}=(2.8\pm 9.6)\times 10^{-3}$ with $\chi^{2}/ndf=6.5/10$. Open squares show the results for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%). A constant line fit gives $P_{\Lambda}=(1.9\pm 8.0)\times 10^{-3}$ with $\chi^{2}/ndf=14.3/10$. Only statistical uncertainties are shown.
Azimuthal angle \Delta\phi correlations are presented for charged hadrons from dijets for 0.4 < p_T < 10 GeV/c in Au+Au collisions at sqrt(s_NN) = 200 GeV. With increasing p_T, the away-side distribution evolves from a broad to a concave shape, then to a convex shape. Comparisons to p+p data suggest that the away-side can be divided into a partially suppressed 'head' region centered at Delta\phi ~ \pi, and an enhanced 'shoulder' region centered at Delta\phi ~ \pi +/- 1.1. The p_T spectrum for the 'head' region softens toward central collisions, consistent with the onset of jet quenching. The spectral slope for the 'shoulder' region is independent of centrality and trigger p_T, which offers constraints on energy transport mechanisms and suggests that the 'shoulder' region contains the medium response to energetic jets.
<p>Per-trigger yield versus $\Delta\phi$ for various trigger and partner $p_T$ ($p_T^A$ $\otimes$ $p_T^B$), in $p$+$p$ and 0-20% Au+Au collisions.</p> <p><i>The systematic errors on $v_2$ are represented by "sys. corr." and are dominated by the reaction plane resolution. The fit that accounts for the overlap of the near- and away-side Gaussians at $\Delta\phi_{min}$ gives systematically lower $b_0$ values that that for ZYAM, and is assigned as the differences as one-sided systematic errors on $b_0$ represented by "sys. uncorr.".
<p>Per-trigger yield versus $\Delta\phi$ for various trigger and partner $p_T$ ($p_T^A$ $\otimes$ $p_T^B$), in $p$+$p$ and 0-20% Au+Au collisions.</p> <p><i>The systematic errors on $v_2$ are represented by "sys. corr." and are dominated by the reaction plane resolution. The fit that accounts for the overlap of the near- and away-side Gaussians at $\Delta\phi_{min}$ gives systematically lower $b_0$ values that that for ZYAM, and is assigned as the differences as one-sided systematic errors on $b_0$ represented by "sys. uncorr.".</p></i>
<p>$R_{HS}$ versus $p_T^B$ for $p$+$p$ and Au+Au collisions for four trigger selections.</p> <p><i>The systematic errors on $v_2$ are represented by "sys. corr." and are dominated by the reaction plane resolution. The fit that accounts for the overlap of the near- and away-side Gaussians at $\Delta\phi_{min}$ gives systematically lower $b_0$ values that that for ZYAM, and is assigned as the differences as one-sided systematic errors on $b_0$ represented by "sys. uncorr.".</p></i>
We study the processes $e^+ e^-\to K^+ K^- \pi^+\pi^-\gamma$, $K^+K^-\pi^0\pi^0\gamma$ and $K^+ K^- K^+ K^-\gamma$, where the photon is radiated from the initial state. About 34600, 4400 and 2300 fully reconstructed events, respectively, are selected from 232 \invfb of \babar data. The invariant mass of the hadronic final state defines the effective \epem center-of-mass energy, so that the $K^+ K^- \pi^+\pi^-\gamma$ data can be compared with direct measurements of the $e^+ e^-\to K^+K^- \pipi$ reaction/ no direct measurements exist for the $e^+ e^-\to K^+ K^- \pi^0\pi^0$ or $\epem\to K^+ K^- K^+ K^-$ reactions. Studying the structure of these events, we find contributions from a number of intermediate states, and we extract their cross sections where possible. In particular, we isolate the contribution from $e^+ e^-\to\phi(1020) f_{0}(980)$ and study its structure near threshold. In the charmonium region, we observe the $J/\psi$ in all three final states and several intermediate states, as well as the $\psi(2S)$ in some modes, and measure the corresponding branching fractions. We see no signal for the Y(4260) and obtain an upper limit of $\BR_{Y(4260)\to\phi\pi^+\pi^-}\cdot\Gamma^{Y}_{ee}<0.4 \ev$ at 90% C.L.
Measurement of the E+ E- --> K+ K- PI+ PI- cross section. Statistical errors only.
Measurement of the E+ E- --> K(892)0 K PI cross section. Statistical errors only.
Measurement of the E+ E- --> PHI PI+ PI- cross section. Statistical errors only.
We report on a high statistics measurement of the total and differential cross sections of the process gamma gamma -> pi^+ pi^- in the pi^+ pi^- invariant mass range 0.8 GeV/c^2 < W < 1.5 GeV/c^2 with 85.9 fb^{-1} of data collected at sqrt{s}=10.58 GeV and 10.52 GeV with the Belle detector. A clear signal of the f_0(980) resonance is observed in addition to the f_2(1270) resonance. An improved 90% confidence level upper limit Br.(eta'(958) -> pi^+ pi^-) < 2.9 x 10^{-3} is obtained for P- and CP-violating decay of the eta'(958) meson using the most conservative assumption about the interference with the background.
Total cross section.
No description provided.
No description provided.
The PHENIX experiment presents results from the RHIC 2005 run with polarized proton collisions at sqrt(s)=200 GeV, for inclusive \pi^0 production at mid-rapidity. Unpolarized cross section results are given for transverse momenta p_T=0.5 to 20 GeV/c, extending the range of published data to both lower and higher p_T. The cross section is described well for p_T < 1 GeV/c by an exponential in p_T, and, for p_T > 2 GeV/c, by perturbative QCD. Double helicity asymmetries A_LL are presented based on a factor of five improvement in uncertainties as compared to previously published results, due to both an improved beam polarization of 50%, and to higher integrated luminosity. These measurements are sensitive to the gluon polarization in the proton, and exclude maximal values for the gluon polarization.
The neutral pion production cross section at $\sqrt{s}$ = 200 GeV as a function of $p_T$ and the results of NLO pQCD calculations for theory scales $\mu$ = $p_T$/2, $p_T$, and $2p_T$. Additional 9.7% normalization uncertainty is not included.
The double helicity asymmetry ($A_{LL}$) for neutral pion production at $\sqrt{s}$ = 200 GeV as a function of $p_T$ (GeV/$c$). Not included in the figure/table: the correlated for all points scale systematic uncertainty of 9.4% (scales both the values and stat. uncertainties by the same factor).
The single helicity asymmetry ($A_L$) for neutral pion production at $\sqrt{s}$ = 200 GeV as a function of $p_T$ (GeV/$c$). Systematic uncertainties are negligible.