Search for heavy resonances decaying to ZZ or ZW and axion-like particles mediating nonresonant ZZ or ZH production at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 04 (2022) 087, 2022.
Inspire Record 1976980 DOI 10.17182/hepdata.114367

A search has been performed for heavy resonances decaying to ZZ or ZW and for axion-like particles (ALPs) mediating nonresonant ZZ or ZH production, in final states with two charged leptons ($\ell$ = e, $\mu$) produced by the decay of a Z boson, and two quarks produced by the decay of a Z, W, or Higgs boson H. The analysis is sensitive to resonances with masses in the range 450 to 2000 GeV. Two categories are defined corresponding to the merged or resolved reconstruction of the hadronically decaying boson. The search is based on data collected during 2016-2018 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. No significant excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-2 and spin-1 resonances are derived as functions of the resonance mass, and exclusion limits on the production of bulk graviton particles and W$'$ bosons are calculated in the framework of the warped extra dimensions and heavy vector triplet models, respectively. In addition, upper limits on the ALP-mediated diboson production cross section and ALP couplings to standard model particles are obtained in the framework of linear and chiral effective field theories. These are the first limits on nonresonant ALP-mediated ZZ and ZH production obtained by the LHC experiments.

12 data tables

SR1 diboson invariant mass distribution in the boosted untagged category after fitting the signal and sideband regions using a signal (ALP linear ZZ) plus background model. The last bin includes events with diboson invariant masses up to 3000 GeV. The signal is normalized to the 95% CL cross section limit at $f_a$ = 3 TeV (the scale factor used in the original figure for better visibility is not applied here).

SR1 diboson invariant mass distribution in the boosted tagged category after fitting the signal and sideband regions using a signal (ALP linear ZZ) plus background model. The last bin includes events with diboson invariant masses up to 3000 GeV. The signal is normalized to the 95% CL cross section limit at $f_a$ = 3 TeV.

SR1 diboson invariant mass distribution in the resolved untagged category after fitting the signal and sideband regions using a signal (ALP linear ZZ) plus background model. The last bin includes events with diboson invariant masses up to 3000 GeV. The signal is normalized to the 95% CL cross section limit at $f_a$ = 3 TeV (the scale factor used in the original figure for better visibility is not applied here).

More…

Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state at $\sqrt{s}$= 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
JHEP 04 (2022) 048, 2022.
Inspire Record 1972089 DOI 10.17182/hepdata.114361

A search for a heavy resonance decaying into a top quark and a W boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV is presented. The data analyzed were recorded with the CMS detector at the LHC and correspond to an integrated luminosity of 138 fb$^{-1}$. The top quark is reconstructed as a single jet and the W boson, from its decay into an electron or muon and the corresponding neutrino. A top quark tagging technique based on jet clustering with a variable distance parameter and simultaneous jet grooming is used to identify jets from the collimated top quark decay. The results are interpreted in the context of two benchmark models, where the heavy resonance is either an excited bottom quark b$^*$ or a vector-like quark B. A statistical combination with an earlier search by the CMS Collaboration in the all-hadronic final state is performed to place upper cross section limits on these two models. The new analysis extends the lower range of resonance mass probed from 1.4 down to 0.7 TeV. For left-handed, right-handed, and vector-like couplings, b$^*$ masses up to 3.0, 3.0, and 3.2 TeV are excluded at 95% confidence level, respectively. The observed upper limits represent the most stringent constraints on the b$^*$ model to date.

7 data tables

Distributions of MtW in the 1b category. The data are shown by filled markers, where the horizontal bars indicate the bin widths. The individual background contributions are given by filled histograms. The expected signal for a LH b* with mb∗ = 2.4 TeV is shown by a dashed line. The shaded region is the uncertainty in the total background estimate. The lower panel shows the ratio of data to the background estimate, with the total uncertainty on the predicted background displayed as the gray band.

Distributions of MtW in the 2b category. The data are shown by filled markers, where the horizontal bars indicate the bin widths. The individual background contributions are given by filled histograms. The expected signal for a LH b* with mb∗ = 2.4 TeV is shown by a dashed line. The shaded region is the uncertainty in the total background estimate. The lower panel shows the ratio of data to the background estimate, with the total uncertainty on the predicted background displayed as the gray band.

Upper limits on the production cross section times branching fraction of the b* LH hypothesis at a 95% CL. Dashed colored lines show the expected limits from the l+jets and all-hadronic channels, where the latter start at resonance masses of 1.4 TeV. The observed and expected limits from the combination are shown as solid and dashed black lines, respectively. The green and yellow bands show the 68 and 95% confidence intervals on the combined expected limits.

More…

Version 2
Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 02 (2022) 142, 2022.
Inspire Record 1972986 DOI 10.17182/hepdata.115022

A measurement of the inclusive jet production in proton-proton collisions at the LHC at $\sqrt{s}$ = 13 TeV is presented. The double-differential cross sections are measured as a function of the jet transverse momentum $p_\mathrm{T}$ and the absolute jet rapidity $\lvert y \rvert$. The anti-$k_\mathrm{T}$ clustering algorithm is used with distance parameter of 0.4 (0.7) in a phase space region with jet $p_\mathrm{T}$ from 97 GeV up to 3.1 TeV and $\lvert y \rvert\lt$ 2.0. Data collected with the CMS detector are used, corresponding to an integrated luminosity of 36.3 fb$^{-1}$ (33.5 fb$^{-1}$). The measurement is used in a comprehensive QCD analysis at next-to-next-to-leading order, which results in significant improvement in the accuracy of the parton distributions in the proton. Simultaneously, the value of the strong coupling constant at the Z boson mass is extracted as $\alpha_\mathrm{S}$(Z) = 0.1170 $\pm$ 0.0019. For the first time, these data are used in a standard model effective field theory analysis at next-to-leading order, where parton distributions and the QCD parameters are extracted simultaneously with imposed constraints on the Wilson coefficient $c_1$ of 4-quark contact interactions. Note added: in the Addendum to this paper, available as Appendix B in this document, an improved value of $\alpha_\mathrm{S}$(Z) = 0.1166 $\pm$ 0.0017 has been extracted. This result supersedes the number in the above abstract of the original publication.

112 data tables

The inclusive jet production cross section as a function of the jet transverse momentum~$p_\mathrm{T}$ measured in $|y| < 0.5$ for jets clustered using the anti-$k_\mathrm{t}$ algorithm with $R=0.4$.

The inclusive jet production cross section as a function of the jet transverse momentum~$p_\mathrm{T}$ measured in $|y| < 0.5$ for jets clustered using the anti-$k_\mathrm{t}$ algorithm with $R=0.4$.

The inclusive jet production cross section as a function of the jet transverse momentum~$p_\mathrm{T}$ measured in $0.5 < |y| < 1.0$ for jets clustered using the anti-$k_\mathrm{t}$ algorithm with $R=0.4$.

More…

Search for supersymmetry in final states with two or three soft leptons and missing transverse momentum in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 04 (2022) 091, 2022.
Inspire Record 1966342 DOI 10.17182/hepdata.114415

A search for supersymmetry in events with two or three low-momentum leptons and missing transverse momentum is performed. The search uses proton-proton collisions at $\sqrt{s} =$ 13 TeV collected in the three-year period 2016-2018 by the CMS experiment at the LHC and corresponding to an integrated luminosity of up to 137 fb$^{-1}$. The data are found to be in agreement with expectations from standard model processes. The results are interpreted in terms of electroweakino and top squark pair production with a small mass difference between the produced supersymmetric particles and the lightest neutralino. For the electroweakino interpretation, two simplified models are used, a wino-bino model and a higgsino model. Exclusion limits at 95% confidence level are set on $\widetilde{\chi}^0_2 / \widetilde{\chi}^\pm_1$ masses up to 275 GeV for a mass difference of 10 GeV in the wino-bino case, and up to 205 (150) GeV for a mass difference of 7.5 (3) GeV in the higgsino case. The results for the higgsino are further interpreted using a phenomenological minimal supersymmetric standard model, excluding the higgsino mass parameter $\mu$ up to 180 GeV with the bino mass parameter $M_1$ at 800 GeV. In the top squark interpretation, exclusion limits are set at top squark masses up to 540 GeV for four-body top squark decays and up to 480 GeV for chargino-mediated decays with a mass difference of 30 GeV.

23 data tables

The post-fit distribution of the $M(\ell\ell)$ variable is shown for the low-MET bin for the DY CR. Uncertainties include both the statistical and systematic components.

The post-fit distribution of the $M(\ell\ell)$ variable is shown for the high-MET bin for the DY CR. Uncertainties include both the statistical and systematic components.

The post-fit distribution of the $M(\ell\ell)$ variable is shown for the low-MET bin for the $\text{t}\bar{\text{t}}$ CR. Uncertainties include both the statistical and systematic components.

More…

Systematic study of nuclear effects in $p$ $+$Al, $p$ $+$Au, $d$ $+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV using $\pi^0$ production

The PHENIX collaboration Acharya, U.A. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 105 (2022) 064902, 2022.
Inspire Record 1965617 DOI 10.17182/hepdata.115023

The PHENIX collaboration presents a systematic study of $\pi^0$ production from $p$ $+$ $p$, $p$ $+$Al, $p$ $+$Au, $d$ $+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Measurements were performed with different centrality selections as well as the total inelastic, 0%--100%, selection for all collision systems. For 0%--100% collisions, the nuclear modification factors, $R_{xA}$, are consistent with unity for $p_T$ above 8 GeV/$c$, but exhibit an enhancement in peripheral collisions and a suppression in central collisions. The enhancement and suppression characteristics are similar for all systems for the same centrality class. It is shown that for high-$p_T$-$\pi^0$ production, the nucleons in the $d$ and $^3$He interact mostly independently with the Au nucleus and that the counter intuitive centrality dependence is likely due to a physical correlation between multiplicity and the presence of a hard scattering process. These observations disfavor models where parton energy loss has a significant contribution to nuclear modifications in small systems. Nuclear modifications at lower $p_T$ resemble the Cronin effect -- an increase followed by a peak in central or inelastic collisions and a plateau in peripheral collisions. The peak height has a characteristic ordering by system size as $p$ $+$Au $>$ $d$ $+$Au $>$ $^{3}$He$+$Au $>$ $p$ $+$Al. For collisions with Au ions, current calculations based on initial state cold nuclear matter effects result in the opposite order, suggesting the presence of other contributions to nuclear modifications, in particular at lower $p_T$.

28 data tables

Differential cross section of $\pi^0$ in p+p collisions at $\sqrt{s}$ = 200 GeV

Invariant yield of $\pi^0$ from (a) p+Al, (b) p+Au, (c) d+Au, and (d) $^{3}$HeAu in different centrality selections at $\sqrt{s}$ = 200 GeV

Nuclear modification factors from inelastic (a) p+Al, (b) p+Au, (c) d+Au, and (d) $^{3}$HeAu collisions at $\sqrt{s}$ = 200 GeV. The right boxes are the $N_{coll}$ uncertainties from the Glauber model, while the left box represents the overall normalization uncertainty from p+p collisions

More…

Version 2
Observation of triple J/$\psi$ meson production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Nature Phys. 19 (2023) 338 338-350, 2023.
Inspire Record 1965242 DOI 10.17182/hepdata.114984

Protons consist of three valence quarks, two up-quarks and one down-quark, held together by gluons and a sea of quark-antiquark pairs. Collectively, quarks and gluons are referred to as partons. In a proton-proton collision, typically only one parton of each proton undergoes a hard scattering - referred to as single-parton scattering - leaving the remainder of each proton only slightly disturbed. Here, we report the study of double- and triple-parton scatterings through the simultaneous production of three J/$\psi$ mesons, which consist of a charm quark-antiquark pair, in proton-proton collisions recorded with the CMS experiment at the Large Hadron Collider. We observed this process - reconstructed through the decays of J/$\psi$ mesons into pairs of oppositely charged muons - with a statistical significance above five standard deviations. We measured the inclusive fiducial cross section to be 272 $^{+141}_{-104}$ (stat) $\pm$ 17 (syst) fb, and compared it to theoretical expectations for triple-J/$\psi$ meson production in single-, double- and triple-parton scattering scenarios. Assuming factorization of multiple hard-scattering probabilities in terms of single-parton scattering cross sections, double- and triple-parton scattering are the dominant contributions for the measured process.

6 data tables

Kinematic properties of each one of the three \JPsi mesons selected in the 5? 6? signal events.

Dimuon invariant mass ($m$), proper decay-length ($L$), transverse momentum ($p_{T}$), rapidity ($y$), and azimuthal angle ($\phi$) of each of the three $J/\psi$ candidates measured in the six triple-$J/\psi$ events passing our selection criteria.

DPS effective cross section

More…

Study of dijet events with large rapidity separation in proton-proton collisions at $\sqrt{s}$ = 2.76 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 03 (2022) 189, 2022.
Inspire Record 1963239 DOI 10.17182/hepdata.113660

The cross sections for inclusive and Mueller-Navelet dijet production are measured as a function of the rapidity separation between the jets in proton-proton collisions at $\sqrt{s} =$ 2.76 TeV for jets with transverse momentum $p_\mathrm{T}$$\gt$ 35 GeV and rapidity $\vert y\vert$$\lt$ 4.7. Various dijet production cross section ratios are also measured. A veto on additional jets with $p_\mathrm{T}$$\gt$ 20 GeV is introduced to improve the sensitivity to the effects of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution. The measurement is compared with the predictions of various Monte Carlo models based on leading-order and next-to-leading-order calculations including the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi leading-logarithm (LL) parton shower as well as the LL BFKL resummation.

24 data tables

Summary of the systematic uncertainties on the cross section dσincl/d∆y.

Summary of the systematic uncertainties on the cross section dσMN/d∆y.

Summary of the systematic uncertainties on the ratio Rincl.

More…

Inclusive and differential cross section measurements of single top quark production in association with a Z boson in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 02 (2022) 107, 2022.
Inspire Record 1961177 DOI 10.17182/hepdata.105865

Inclusive and differential cross sections of single top quark production in association with a Z boson are measured in proton-proton collisions at a center-of-mass energy of 13 TeV with a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ recorded by the CMS experiment. Events are selected based on the presence of three leptons, electrons or muons, associated with leptonic Z boson and top quark decays. The measurement yields an inclusive cross section of 87.9 $_{-7.3}^{+7.5}$ (stat) $_{-6.0}^{+7.3}$ (syst) fb for a dilepton invariant mass greater than 30 GeV, in agreement with standard model (SM) calculations and the most precise determination to date. The ratio between the cross sections for the top quark and the top antiquark production in association with a Z boson is measured as 2.37 $_{-0.42}^{+0.56}$ (stat) ${}_{-0.13}^{+0.27}$ (syst). Differential measurements at parton and particle levels are performed for the first time. Several kinematic observables are considered to study the modeling of the process. Results are compared to theoretical predictions with different assumptions on the source of the initial-state b quark and found to be in agreement, within the uncertainties. Additionally, the spin asymmetry, which is sensitive to the top quark polarization, is determined from the differential distribution of the polarization angle at parton level to be 0.54 $\pm$ 0.16 (stat) $\pm$ 0.06 (syst), in agreement with SM predictions.

73 data tables

Numerical results of inclusive cross section measurements. Each row represents a measurement: "tZq" for fully inclusive, "tZq_top" for the top quark channel, "tZq_antitop" for the top antiquark channel, "ratio" for the ratio measurement. The columns are the central value, statistical error up/down, systematic error up/down. All values are in fb, except for the ratio (dimensionless).

Numerical representation of impact plot.

Simulated signal, total background, and observed data in the signal category with exactly 1 b jet and 2-3 jets for the three data-taking years combined. For the uncertainty on the signal and background, both the total (systematic+statistical) and statistical uncertainties are provided. The uncertainty on the data is the (statistical) Poisson uncertainty. Note that this is the prefit version.

More…

A new calibration method for charm jet identification validated with proton-proton collision events at $\sqrt{s}$ =13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JINST 17 (2022) P03014, 2022.
Inspire Record 1961179 DOI 10.17182/hepdata.114864

Many measurements at the LHC require efficient identification of heavy-flavour jets, i.e. jets originating from bottom (b) or charm (c) quarks. An overview of the algorithms used to identify c jets is described and a novel method to calibrate them is presented. This new method adjusts the entire distributions of the outputs obtained when the algorithms are applied to jets of different flavours. It is based on an iterative approach exploiting three distinct control regions that are enriched with either b jets, c jets, or light-flavour and gluon jets. Results are presented in the form of correction factors evaluated using proton-proton collision data with an integrated luminosity of 41.5 fb$^{-1}$ at $\sqrt{s}$ = 13 TeV, collected by the CMS experiment in 2017. The closure of the method is tested by applying the measured correction factors on simulated data sets and checking the agreement between the adjusted simulation and collision data. Furthermore, a validation is performed by testing the method on pseudodata, which emulate different miscalibration conditions. The calibrated results enable the use of the full distributions of heavy-flavour identification algorithm outputs, e.g. as inputs to machine-learning models. Thus, they are expected to increase the sensitivity of future physics analyses.

6 data tables

The shape calibration SF values as a function of CvsL and CvsB for DeepCSV-based c taggers for c jets

The shape calibration SF values as a function of CvsL and CvsB for DeepCSV-based c taggers for b jets

The shape calibration SF values as a function of CvsL and CvsB for DeepCSV-based c taggers for light-flavour jets

More…

Search for flavor-changing neutral current interactions of the top quark and Higgs boson in final states with two photons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
Phys.Rev.Lett. 129 (2022) 032001, 2022.
Inspire Record 2111572 DOI 10.17182/hepdata.105999

Proton-proton interactions resulting in final states with two photons are studied in a search for the signature of flavor-changing neutral current interactions of top quarks (t) and Higgs bosons (H). The analysis is based on data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. No significant excess above the background prediction is observed. Upper limits on the branching fractions ($\mathcal{B}$) of the top quark decaying to a Higgs boson and an up (u) or charm quark (c) are derived through a binned fit to the diphoton invariant mass spectrum. The observed (expected) 95% confidence level upper limits are found to be 0.019 (0.031)% for $\mathcal B$(t $\to$ Hu) and 0.073 (0.051)% for $\mathcal{B}$(t $\to$ Hc). These are the strictest upper limits yet determined.

1 data table

Expected and observed 95\% CL upper limits on the branching fraction of the top quark decaying to the Higgs boson and a light-flavor quark (either an up or a charm quark)