The cross section for the production of Ξ + particles in K + p interactions at 12.7 GeV/ c is 10 ± 3 μ b; the Ξ − production cross section is 2.5 ± 1.0 μ b; the upper limit on Ω − or Ω + production is 0.4 μb. The Ξ − are produced preferentially in the backward direction in the CM system while the Ξ + are produced mainly forward. The mass and lifetime of the Ξ + agree with the accepted values for the Ξ − hyperon.
Cross sections have been corrected for the detection probability of all observed hyperons involved in these reactions.
Approximately 700 events of the reaction K − d → K − π − pp s produced by 5.5 GeV/ c kaons were used to measure the cross section for Kπ elastic scattering in the T = 3 2 state by a Chew-Low extrapolation. The cross section does not exceed 2.1 mb and has no structure for Kπ masses from threshold up to 2.0 GeV.
Chew-Low extrapolation is used for evaluation of the K- P elastic cross section.
We have studied nonstrange p¯−p interactions observed in 7000 pictures of the 80-in. Brookhaven National Laboratory hydrogen bubble chamber exposed to an antiproton beam with a momentum of 6.94 BeVc. The total cross section was measured to be 58.7±2.8 mb, and the elastic interaction cross section 14.2±1.2 mb. The elastic differential cross section for four-momentum transfers (−t)≤0.3 (BeVc)2 is well described by the exponential form dσeldt=(dσdt)t=0ebt, where b=13.1±1.1 (BeVc)−2. The single-pion production cross section is 4.0±0.9 mb. This channel proceeds 70% through resonance formation. N*(1238) isobar and anti-isobar formation dominates pion production in four- and six-pronged events; the double-isobar formation cross section in the final state pπ+p¯π− is 1.35±0.2 mb. Isobar production was observed to be consistent with the predictions of a dominant one-particle-exchange process. The pion-annihilation process, which has a cross section of 25±5 mb, shows substantial pion resonance formation.
'1'. '2'.
The reactions pp → NN π are studied at 19 GeV/ c and analysed in terms of the amplitudes with the low mass N π system in isospin states 1 2 and 3 2 respectively. The I − 1 2 cross section is compared with the corresponding one in π p→ ππ N at 8 GeV/ c .
'1'.
None
'1'. '2'. '3'.
The p¯−p elastic scattering at 6.9 GeV/c was studied by the analysis of antiproton film taken by the Brookhaven National Laboratory 80-in. hydrogen bubble chamber. The cross section of the elastic scattering was 14.7 ± 1.5 mb. The angular distribution showed a dip in the region of −t≈0.6 (GeV/c)2 and a secondary maximum at −t≈0.8 (GeV/c)2.
No description provided.
No description provided.
None
No description provided.
The elastic, the pion-production, and the multipion-annihilation cross sections for antiproton-proton interactions at 3.28 and 3.66 BeV/c incident antiproton momenta have been measured. A comparison of the elastic interactions at 3.28 BeV/c with a purely-absorbing disc optical model gave a best value for the radius of interaction of 1.3 F. The real part of the forward scattering amplitude has been found to be less than 20% of the imaginary part. A study of the asymmetries in double elastic scatters yielded a value for a polarizing power of the hydrogen consistent with zero when averaged over production angles.
No description provided.
'1'.
'1'.
Detailed measurements of the production of charged π mesons in proton-proton collisions are reported. The observed results are compared with the "isobar" and "one-pion exchange" models and for single production are in agreement if only the "resonant" part of the π−p cross section is used and if the angular distribution cos16θ is introduced for the production of the N1* isobar. The effects of higher resonances are also considered.
No description provided.
No description provided.
No description provided.
As a part of our program to study p−p collisions at Cosmotron energies, the differential cross sections for elastic scattering were measured at five laboratory angles between 2.3° and 17° for each incident energy. Total elastic cross sections obtained by integration are 21.4±1.4, 17.0±0.8, and 14.7±0.7 mb at 1.35, 2.1, and 2.9 BeV, respectively. The angular distribution as a function of the momentum transfer, exhibits a forward diffraction peak, the width of which shrinks slightly as the incident energy increases. The experimental results were fitted by simple optical model calculations and also compared with the predictions of the composite particle theory of Chew and Frautschi.
No description provided.
'1'.
'1'.