Measurement of Multijet Production in ep Collisions at High Q^2 and Determination of the Strong Coupling alpha_s

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
Eur.Phys.J.C 75 (2015) 65, 2015.
Inspire Record 1301218 DOI 10.17182/hepdata.64353

Inclusive jet, dijet and trijet differential cross sections are measured in neutral current deep-inelastic scattering for exchanged boson virtualities 150 < Q^2 < 15000 GeV^2 using the H1 detector at HERA. The data were taken in the years 2003 to 2007 and correspond to an integrated luminosity of 351 pb^{-1}. Double differential Jet cross sections are obtained using a regularised unfolding procedure. They are presented as a function of Q^2 and the transverse momentum of the jet, P_T^jet, and as a function of Q^2 and the proton's longitudinal momentum fraction, Xi, carried by the parton participating in the hard interaction. In addition normalised double differential jet cross sections are measured as the ratio of the jet cross sections to the inclusive neutral current cross sections in the respective Q^2 bins of the jet measurements. Compared to earlier work, the measurements benefit from an improved reconstruction and calibration of the hadronic final state. The cross sections are compared to perturbative QCD calculations in next-to-leading order and are used to determine the running coupling and the value of the strong coupling constant as alpha_s(M_Z) = 0.1165 (8)_exp (38)_{pdf,theo}.

20 data tables

Double-differential inclusive jet cross sections measured as a function of Q**2 and PT(JET) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.5% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

Double-differential dijet cross sections measured as a function of Q**2 and MEAN(PT(2JET)) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.6% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

Double-differential dijet cross sections measured as a function of Q**2 and XI(2) using the kT jet algorithm. The total systematic uncertainty sums all systematic uncertainties in quadrature, including the uncertainty due to the LAr noise of 0.6% and the total normalisation uncertainty of 2.9%. The correction factors on the theoretical cross sections C(HAD) and C(EW) are listed in the rightmost columns.

More…

A Direct determination of the gluon density in the proton at low x

The H1 collaboration Aid, S. ; Andreev, V. ; Andrieu, B. ; et al.
Nucl.Phys.B 449 (1995) 3-21, 1995.
Inspire Record 395643 DOI 10.17182/hepdata.44979

A leading order determination of the gluon density in the proton has been performed in the fractional momentum range $1.9 \cdot 10~{-3} < x_{g/p} < 0.18$ by measuring multi-jet events from boson-gluon fusion in deep-inelastic scattering with the H1 detector at the electron-proton collider HERA. This direct determination of the gluon density was performed in a kinematic region previously not accessible. The data show a considerable increase of the gluon density with decreasing fractional momenta of the gluons.

1 data table

FG is gluon structure function. XPARTON here means the X of the gluon. For the experimental definitions of the XPARTON see paper.


Determination of the strong coupling constant from jet rates in deep inelastic scattering

The H1 collaboration Ahmed, T. ; Aid, S. ; Andreev, V. ; et al.
Phys.Lett.B 346 (1995) 415-425, 1995.
Inspire Record 380945 DOI 10.17182/hepdata.45050

Jet rates in deep inelastic electron proton scattering are studied with the H1 detector at HERA for momentum transfers squared between 10 and 4000 GeV 2 . It is shown that they can be quantitatively described by perturbative QCD in next to leading order making use of the parton densities of the proton and with the strong coupling constant α s as a free parameter. The measured value, α s ( M Z 2 ) = 0.123 ± 0.018, is in agreement both with determinations from e + e − annihilation at LEP using the same observable and with the world average.

1 data table

Determination of ALP_S(MZ**2). Error contains both statistics and systematics.


Determination of alpha-s from hadronic event shapes measured on the Z0 resonance

The L3 collaboration Adrian, O. ; Aguilar-Benitez, M. ; Ahlen, S. ; et al.
Phys.Lett.B 284 (1992) 471-481, 1992.
Inspire Record 334951 DOI 10.17182/hepdata.29157

We present a study of the global event shape variables thrust and heavy jet mass, of energy-energy correlations and of jet multiplicities based on 250 000 hadronic Z 0 decays. The data are compared to new QCD calculations including resummation of leading and next-to-leading logarithms to all orders. We determine the strong coupling constant α s (91.2 GeV) = 0.125±0.003 (exp) ± 0.008 (theor). The first error is the experimental uncertainty. The second error is due to hadronization uncertainties and approximations in the calculations of the higher order corrections.

3 data tables

Measured EEC distribution corrected for detector effects and photon radiation. Errors are combined statistical and systematic uncertainties.

Measured average jet multiplicities for the K_PT algorithm. All numbers are corrected for detector effects and photon radiation. Errors are combined statistical and systematic uncertainties.

Value of strong coupling constant, alpha_s, determined from the data. First error is experimental, the second is theoretical.


Measurement of the strong coupling constant alpha-s for bottom quarks at the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 271 (1991) 461-467, 1991.
Inspire Record 318981 DOI 10.17182/hepdata.38288

We have measured the ratio of the strong coupling constants α s for bottom quarks and light quarks at the Z 0 resonance, in order to test the flavour independence of the strong interaction. The coupling strength α s has been determined from the fraction of events with three jets, measured for a sample of all hardronic events, and for inclusive muon and electron events. The b purity is evaluated to be 22% for the first data set and 87% for the inclusive lepton sample. We find α s ( b ) α s ( udsc ) =1.00± 0.05 ( stat. )±0.06 ( syst. ) .

1 data table

No description provided.


A Test of QCD based on three jet events from Z0 decays

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 263 (1991) 551-562, 1991.
Inspire Record 315954 DOI 10.17182/hepdata.38291

We present a study of 43 000 3-jet events from Z 0 boson decays. Both the measured jet energy distributions and the event orientation are reproduced by second order QCD. An alternative model with scalar gluons fails to describe the data.

1 data table

Jets are ordered according their energy: E1 > E2 > E3.


A Measurement of two jet decays of the W and Z bosons at the CERN anti-p p collider

The UA2 collaboration Alitti, J. ; Ansari, R. ; Ansorge, R.E. ; et al.
Z.Phys.C 49 (1991) 17-28, 1991.
Inspire Record 298412 DOI 10.17182/hepdata.15084

A study of the two-jet mass spectrum measured with the UA 2 calorimeter has revealed a signal from hadronic decays ofW andZ bosons above a large background. Production and decay properties of the signal have been measured. The combined production cross-section σ·B(W, Z → two jets) is 9.6±2.3 (stat.)±1.1 (syst.) nb, compared with an expectation of 5.8 nb calculated to order αs2. A limit on the production cross-section of additional heavy vector bosons decaying into two jets is given as a function of the boson mass.

1 data table

No description provided.


Studies of Jet Production Rates in $e^+ e^-$ Annihilation at $e$({CM}) = 29-{GeV}

Bethke, S. ; Abrams, G. ; Adolphsen, C.E. ; et al.
Z.Phys.C 43 (1989) 325, 1989.
Inspire Record 277772 DOI 10.17182/hepdata.15472

Production rates of multijet hadronic final states are studied ine+e− annihilation at 29 GeV center of mass energy. QCD shower model calculations with exact first order matrix element weighting at the first gluon vertex are capable of reproducing the observed multijet event rates over a large range of jet pair masses. The method used to reconstruct jets is well suited for directly comparing experimental jet rates with parton rates calculated in perturbative QCD. Evidence for the energy dependene of αs is obtained by comparing the observed production rates of 3-jet events with results of similar studies performed at higher center of mass energies.

2 data tables

Observed production rates relative to the total hadronic cross section.

Production rates corrected for fragmentation, initial state radiation and detector effects.


Measurement of the gluon structure function from direct photon data at the CERN anti-p p collider

The UA2 collaboration Alitti, J. ; Ambrosini, G. ; Ansari, R. ; et al.
Phys.Lett.B 299 (1993) 174-182, 1993.
Inspire Record 341576 DOI 10.17182/hepdata.48424

A measurement of the gluon structure fusion using direct photon events observed with the UA2 detector in p p collisions at √ s =630 GeV is presented. The x -range covered by this analysis is between 0.049 and 0.207 and the Q 2 range is between 280 GeV 2 and 3670 GeV 2 . The data sample corresponds to an integrated luminosity of 7.14 pb −1 . The results are found to be in good agreement with the gluon distributions measured in deep inelastic scattering experiments extrapolated to the UA2 Q 2 values.

1 data table

X(Q=PARTON) and Q**2 are mean values.


Measurement of the multiplicity of charm quark pairs from gluons in hadronic Z0 decays

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 353 (1995) 595-605, 1995.
Inspire Record 395451 DOI 10.17182/hepdata.48158

We have measured the multiplicity of charm quark pairs arising from gluon splitting in a sample of about 3.5 million hadronic Z 0 decays. By selecting a 3-jet event topology and tagging charmed hadrons in the lowest energy jet using leptons, we established a signature of heavy quark pair production from gluons. The average number of gluons splitting into a c c pair per hadronic event was measured to be n g→c c =(2.27±0.28±0.41) × 10 −2 .

1 data table

Axis error includes +- 8.4/8.4 contribution (Total generator error for the electron channel due to the uncertainties in parameters of Peterson model of fragmentation, LAMBDA_QCD, ALPHA_S, Lund fragmentation parameters and lepton decay model).