Observation of an excited charmed baryon decaying into Xi(c)0 pi+

The CLEO collaboration Gibbons, L. ; Johnson, S.D. ; Kwon, Y. ; et al.
Phys.Rev.Lett. 77 (1996) 810-813, 1996.
Inspire Record 416471 DOI 10.17182/hepdata.47237

Using data recorded by the CLEO II detector at the Cornell Electron Storage Ring, we report the first observation of an excited charmed baryon decaying into Ξc0π+. The state has mass difference M(Ξc0π+)−M(Ξc0) of 174.3±0.5±1.0MeV/c2, and a width of <3.1MeV/c2 (90% confidence level limit). We identify the new state as the Ξc*+, the isospin partner of the recently discovered Ξc*0.

1 data table

CONST(NAME=EPS) is the parameter of the Peterson fragmentation function (C.Peterson et al., PR D27, 105 (1983)) D(N)/D(X) = FD(X) = const * (1/X)*1/(1- (1/X)-CONST(NAME=EPS)/(1-X))**2. Charged conjugate states are undestood.


Observation of new decay modes of the charmed strange baryon Xi(c)+

The CLEO collaboration Edwards, K.W. ; McLean, K.W. ; Ogg, M. ; et al.
Phys.Lett.B 373 (1996) 261-266, 1996.
Inspire Record 404590 DOI 10.17182/hepdata.47254

Using the CLEO II detector operating at the e + e − Cornell Electron Storage Ring (CESR), we present evidence for new decay modes of the Ξ c + into Ξ 0 π + , Ξ 0 π + π 0 , and Ξ 0 π + π − π + . The branching ratios of these decay modes, relative to Ξ c + → Ξ − π + π + , have been measured to be 0.55±0.13±0.09, 2.34±0.57±0.37, and 1.74±0.42±0.27, respectively.

1 data table

Charge conjugate modes are imlied. P(P=3,C=MAX) is the maximum momentum value and given by P(P=3,C=MAX)**2 = E(P=1)**2 - M(P=3)**2).


Observation of a narrow state decaying into Xi(c)+ pi-

The CLEO collaboration Avery, P. ; Freyberger, A. ; Lingel, K. ; et al.
Phys.Rev.Lett. 75 (1995) 4364-4368, 1995.
Inspire Record 397770 DOI 10.17182/hepdata.47270

Using data recorded by the CLEO-II detector at CESR, we report the first observation of a narrow state decaying into $\Xi_c~+\pi~-$. The state has mass difference $M(\Xi_c~+\pi~-)-M(\Xi_c~+)$ of $178.2\pm0.5\pm1.0$ $\rm{MeV/c~2}$, and a width of $&lt;5.5$ $\rm{MeV/c~2}$ (90\% confidence level limit). The most likely explanation of this new state is that it is the $J=\32$ spin excitation of the $\Xi_c~0$ charmed baryon.

1 data table

No description provided.


Observation of the Cabibbo suppressed charmed baryon decay lambda(c)+ ---> p phi

The CLEO collaboration Alexander, J.P. ; Bebek, C. ; Berger, B.E. ; et al.
Phys.Rev.D 53 (1996) 1013-1017, 1996.
Inspire Record 397665 DOI 10.17182/hepdata.47234

We report the observation of the Cabibbo-suppressed decays \lcpkk\ and \lcpphi\ using data collected with the CLEO II detector at CESR. The latter mode, observed for the first time with significant statistics, is of interest as a test of color-suppression in charm decays. We have determined the branching ratios for these modes relative to \lcpkpi\ and compared our results with theory.

1 data table

Branching ratio of Cabibbo-suppressed and resolved modes.


Analyzing power measurement in inclusive Lambda0 production with a 200-GeV/c polarized proton beam

The E704 collaboration Bravar, A. ; Adams, D.L. ; Akchurin, N. ; et al.
Phys.Rev.Lett. 75 (1995) 3073-3077, 1995.
Inspire Record 406598 DOI 10.17182/hepdata.19610

The considerable polarization of hyperons produced at high xF has been known for a long time and has been interpreted with various theoretical models in terms of the constituents' spin. Recently, the analyzing power in inclusive Λ0 hyperon production has also been measured using the 200GeV/c Fermilab polarized proton beam. The covered kinematic range is 0.2≤xF≤1.0 and 0.1≤pT≤1.5GeV/c. The data indicate a negative asymmetry at large xF and moderate pT. These results can further test the current ideas on the underlying mechanisms for hyperon polarization.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Spin asymmetry in muon - proton deep inelastic scattering on a transversely polarized target

The Spin Muon (SMC) collaboration Adams, D. ; Adeva, B. ; Arik, E. ; et al.
Phys.Lett.B 336 (1994) 125-130, 1994.
Inspire Record 375478 DOI 10.17182/hepdata.48344

We measured the spin asymmetry in the scattering of 100 GeV longitudinally-polarized muons on transversely polarized protons. The asymmetry was found to be compatible with zero in the kinematic range $0.006<x<0.6$, $1<Q~2<30\,\mbox{GeV}~2$. {}From this result we derive the upper limits for the virtual photon--proton asymmetry $A_2$, and for the spin structure function $g_2$. For $x<0.15$, $A_2$ is significantly smaller than its positivity limit $\sqrt{R}$.

2 data tables

No description provided.

Nucleon spin structure function g2.


Measurement of the spin dependent structure function g1(x) of the proton.

The Spin Muon (SMC) collaboration Adams, D. ; Adeva, B. ; Arik, E. ; et al.
Phys.Lett.B 329 (1994) 399-406, 1994.
Inspire Record 373036 DOI 10.17182/hepdata.48171

: We have measured the spin-dependent structure function $g_1~p$ of the proton in deep inelastic scattering of polarized muons off polarized protons, in the kinematic range $0.003<x<0.7$ and $1\,\mbox{GeV}~2<Q~2<60\,\mbox{GeV}~2$. Its first moment, $\int_0~1 g_1~p(x) dx $, is found to be $0.136 \pm 0.011\,(\mbox{stat.})\pm 0.011\,(\mbox{syst.})$ at $Q~2=10\,\mbox{GeV}~2$. This value is smaller than the prediction of the Ellis--Jaffe sum rule by two standard deviations, and is consistent with previous measurements. A combined analysis of all available proton, deuteron and neutron data confirms the Bjorken sum rule to within $10\%$ of the theoretical value.

3 data tables

Results on the virtual photon proton asymmetry.

Results on the spin structure function of the proton.

Data for g1 at fixed Q**2 = 10 GeV (assuming no Q**2 dependence of A1).


Analyzing power measurement of p p elastic scattering in the Coulomb - nuclear interference region with the 200-GeV/c polarized proton beam at Fermilab

The E581/704 collaboration Akchurin, N. ; Langland, J. ; Onel, Y. ; et al.
Phys.Rev.D 48 (1993) 3026-3036, 1993.
Inspire Record 364576 DOI 10.17182/hepdata.22670

The analyzing power AN of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5 × 10−3 to 5.0 × 10−2 (GeV/c)2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed.

1 data table

No description provided.


Analyzing Power in Inclusive $\pi^+$ and $\pi^-$ Production at High $\chi_F$ with a 200 GeV Polarized Proton Beam

The FNAL-E704 collaboration Adams, D.L. ; Akchurin, N. ; Belikov, N.I. ; et al.
Phys.Lett.B 264 (1991) 462-466, 1991.
Inspire Record 315569 DOI 10.17182/hepdata.29360

The analyzing power in inclusive charged pion production has been measured using the 200 GeV Fermilab polarized proton beam. A striking dependence in x F is observed in which A N increases from 0 to 0.42 with increasing x F for the π + data and decreases from 0 to −0.38 with increasing x F for π − data. The kinematic range covered is 0.2⩽ x F ⩽0.9 and 0.2⩽ p T ⩽2.0 GeV / c . In a simple model our data indicate that at large x F the transverse spin of the proton is correlated with that of its quark constituents.

7 data tables

Integrated over all PT.

Integrated over all PT.

No description provided.

More…

Analyzing Power Measurement in Inclusive $\pi^0$ Production at High $\chi_F$

Bonner, B.E. ; Buchanan, J.A. ; Carey, D.C. ; et al.
Phys.Rev.Lett. 61 (1988) 1918, 1988.
Inspire Record 269386 DOI 10.17182/hepdata.2928

The analyzing power AN in inclusive π0 production has been measured with use of the new 185-GeV/c Fermilab polarized proton beam. We obtain the value AN=0.10±0.03 for π0's in the kinematic region 0.2<xF<0.8 and 0.3<pT<1.2 GeV/c. In certain models of particle production this suggests that the spin of the proton is carried by its valence quarks.

7 data tables

No description provided.

No description provided.

Individual polarisation measurements.

More…