Date

C-12 (gamma,p) B-11 cross-section from 80 to 157 MeV

Harty, P.D. ; McGeorge, J.C. ; MacGregor, I.J.D. ; et al.
Phys.Rev.C 51 (1995) 1982-1990, 1995.
Inspire Record 411139 DOI 10.17182/hepdata.25963

The C12(γ,p)11B differential cross section has been measured over proton angles ranging from 58° to 128°, using tagged photons of energy 80–157 MeV, for low-lying regions of residual excitation energy in B11. The data have been compared with four different types of calculation. It is shown that scaling of the cross section with momentum mismatch occurs for both the ground-state and excited-state data.

3 data tables

EX IN 0 MEV REGION (FROM 0 TO 1.5 MEV). ANGULAR BINS OF 5 DEG WIDTH.

EX = 7 (FROM 6.5 TO 8.0 MEV). ANGULAR BINS OF 5 DEG WIDTH.

EX = 13 (FROM 12.0 TO 13.5 MEV). ANGULAR BINS OF 5 DEG WIDTH.


B* production in Z decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 68 (1995) 353-362, 1995.
Inspire Record 395026 DOI 10.17182/hepdata.52359

None

2 data tables

No description provided.

No description provided.


C-12 (gamma , p) B-11 cross-section from 44 to 98 MeV

Mori, K. ; Harty, P.D. ; Fujii, Y. ; et al.
Phys.Rev.C 51 (1995) 2611-2615, 1995.
Inspire Record 411138 DOI 10.17182/hepdata.25938

The C12(γ,p0+1)11B differential cross section has been measured for tagged-photon energies of Eγ=44–98 MeV, at laboratory angles of 30°, 45°, 65°, and 90°. Comparison has been made with four different types of calculation. Results from similar calculations for the photoneutron channel have been compared to previously published C12(γ,n0+1)11C data.

1 data table

No description provided.


Electromagnetic fission of U-238 at 600-MeV and 1000-MeV per nucleon

Rubehn, Th. ; Müller, W.F. J. ; Bassini, R. ; et al.
Z.Phys.A 353 (1995) 197-204, 1995.
Inspire Record 395587 DOI 10.17182/hepdata.42033

Electromagnetic fission of238U projectiles at E/A =600 and 1000 MeV was studied with the ALADIN spectrometer at the heavy-ion synchrotron SIS. Seven different targets (Be, C, Al, Cu, In, Au and U) were used. By considering only those fission events where the two charges added up to 92, most of the nuclear interactions were excluded. The nuclear contributions to the measured fission cross sections were determined by extrapolating from beryllium to the heavier targets with the concept of factorization. The obtained cross sections for electromagnetic fission are well reproduced by extended Weizsäcker-Williams calculations which include E1 and E2 excitations. The asymmetry of the fission fragments' charge distribution gives evidence for the excitation of the double giant-dipole resonance in uranium.

1 data table

Electromagnetic fission.


A Measurement of the photon structure function F2(gamma) at an average Q**2 of 12-GeV**2/c**4

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 69 (1996) 223-234, 1996.
Inspire Record 396884 DOI 10.17182/hepdata.47867

None

2 data tables

No description provided.

Low x domain.


Search for exclusive charmless B meson decays with the DELPHI detector at LEP

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 357 (1995) 255-266, 1995.
Inspire Record 397145 DOI 10.17182/hepdata.52353

Charmless hadronic decays of beauty mesons have been searched for using the data collected with the DELPHI detector at the LEP collider. Several two, three and four-body decay modes have been investigated. Particle identification was used to distinguish the final states with protons, kaons and pions. Three candidate events selected in two-body decay modes are interpreted as evidence for charmless B decays. No excess has been found in higher multiplicity modes and improved upper limits for some of the branching ratios are given.

3 data tables

Two body decay modes. Upper limits at 90% CL. In computing of limits the fractions of B/(d,u)(0,-) and B/S0 mesons were assumed to be 0.39 and 0.12 respectively. Limits are given for the weighted average of the decay rates of the two neutral B mesons.

Three body decay modes. Upper limits at 90% CL.

Four body decay modes. Upper limits at 90% CL.


Study of prompt photon production in hadronic Z0 decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 69 (1995) 1-14, 1995.
Inspire Record 397391 DOI 10.17182/hepdata.48136

None

3 data tables

Rates for gamma + 1 jet.

Rates for gamma + 2 jet.

Rates for gamma + 3 jet.


A Measurement of the tau leptonic branching fractions

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 357 (1995) 715-724, 1995.
Inspire Record 398321 DOI 10.17182/hepdata.48138

A sample of 25000 Z 0 → τ + τ − events collected by the DELPHI experiment at LEP in 1991 and 1992 is used to measure the leptonic branching fractions of the τ lepton. The results are B(τ → eν ν ) = (17.51 ± 0.39) % and B(τ → μν ν ) = (17.02 ± 0.31) %. The ratio of the muon and electron couplings to the weak charged current is measured to be g μ g e = 1.000 ± 0.013 , satisfying e-μ universality. The leptonic branching fraction corrected to the value for a massless lepton, assuming e-μ universality, is found to be B(τ → lν ν ) = (17.50 ± 0.25) %.

3 data tables

Axis error includes +- 0.23/0.23 contribution (Data statistics).

Axis error includes +- 0.19/0.19 contribution (Data statistics).

Combined from the two branching fractions above. E-MU universality assumed.


Measurement of the polarized forward - backward asymmetry of Z0 ---> b anti-b using a lifetime tag and momentum weighted track charge

The SLD collaboration Abe, K. ; Abt, I. ; Ahn, C.J. ; et al.
SLAC-PUB-6979, 1995.
Inspire Record 398301 DOI 10.17182/hepdata.18618

None

1 data table

No description provided.


Measurement of Delta++ (1232) production in hadronic Z decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 361 (1995) 207-220, 1995.
Inspire Record 399737 DOI 10.17182/hepdata.48095

A measurement of the Δ ++ (1232) inclusive production in hadronic decays of the Z at LEP is presented, based on 1.3 million hadronic events collected by the DELPHI detector in the 1994 LEP running period. The DELPHI ring imaging Cherenkov counters are used for identifying hadrons. The average Δ ++ (1232) multiplicity per hadronic event is 0.079 ± 0.015 which is more than a factor of two below the JETSET, HERWIG and UCLA model predictions. It agrees with a recently proposed universal mass dependence of particle production rates in e + e − annihilations.

2 data tables

Differential DELTA(1232)++ cross section. Errors are combined statistics and systematics.

Mean multiplicities. Extrapolation to full x range using a combination of JETSET, HERWIG and UCLA models. The second systematic error comes from the uncertainty in the extrapolation.