The inclusive production of Ξ − and Ξ ∗0 (1530) is investigated in K − p interactions at 10 and 16 GeV/ c . The inclusive production cross sections are 172 ± 20 μ b and 135 ± 15 μ b for the Ξ − , and 43 ± 7 μ b and 32 ± 5 μ b for the Ξ ∗0 (1530) at 10 and 16 GeV /c , respectively. In the beam momentum range up to 16 GeV/ c , the energy dependence of the cross section for Ξ − production in K − p interactions is similar to Σ − production in π − p interactions. It is, instead, different from the energy behaviour of Σ − production cross sections observed in π − p interactions. The Ξ − and Ξ ∗0 (1530) are both produced more in the forward ( x > 0) than in the backward hemisphere, indicating the presence of hyperon-exchange processes.
No description provided.
No description provided.
Cross-section values or upper limits are presented for twenty-five two-body hypercharge-exchange reactions in K − p and π + p interactions at 10 and 16 GeV/ c . The 16 GeV/ c results are compared with some predictions of line-reversal plus exchange-degenerate Regge poles, of SU(3) and of the additive quark model. Agreement is found in all cases.
No description provided.
The inclusive and semi-inclusive cross sections for K*±(890) and Σ±(1385) resonances are determined in p¯p interactions at 14.75 GeV/c. They account for a large fraction of the KS0 and Λ0 produced. The K*-resonance production also affects the low-pT2 distribution of inclusive KS0. The x distributions of the resonance production are studied in terms of a simple quark-recombination model.
No description provided.
No description provided.
No description provided.
A high-statistics measurement of the reaction π − p→ η n; η →2 γ has been performed at the 70 GeV Serpukhov accelerator for 15, 20, 25, 30 and 40 GeV/ c incident pion momentum using the NICE set-up with its associated 648-channel hodoscope spectrometer for γ-ray detection. It is found that the spin-flip and non-spin-flip amplitudes can be parametrized, for small | t |, as exponentials with the same slopes to within a few percent. For | t | ≳ 1 (GeV/ c ) 2 there is a break in the differential cross section. In addition, the A 2 effective trajectory deviates markedly for | t | ≳ 1 GeV/ c ) 2 from the linear behaviour valid for smaller | t |.
No description provided.
No description provided.
No description provided.
Inclusive cross sections of η production by e + e - annihilation for c.m. energies between 4.0 and 5.0 GeV are presented. The η production is shown to be correlated with the production of a weakly decaying particle, indicating that its main source is F production. At the 4.42 GeV resonance it is correlated with a low energy photon, suggesting F F ∗ or F ∗ F ∗ production. A mass determination of the F is made at 4.42 GeV using the F → ηπ decay channel.
NUMERICAL VALUES MEASURED FROM GRAPH IN PREPRINT. A CHARM MODEL (METHOD 2) GAVE CONSISTENT RESULTS FOR BACKGROUND SEPARATION.
Inclusive production of ifπ ± , K ± and p has been studied near charm threshold for c.m. energies between 3.6 and 5.2 GeV. Differential and scaling cross sections together with particle multiplicities have been determinated. By comparing data below and above charm threshold the charm contribution to if π ± and K ± production has been extracted. A comparison has been made between inclusice p production and inelastic electron-proton scattering. To study differences between three-gluon annihilation and two-quark production of the spectra from J/ decay and from non-resonant production at 3.6 GeV has been compared.
No description provided.
No description provided.
No description provided.
We have measured inclusive electron production in multiprong events produced by e+e− annihilation in the center-of-mass energy range 3.9-7.4 GeV. We find the electron momentum spectra are consistent with the electrons coming mainly from decays of charmed particles, with a smaller contribution from decays of the τ lepton. From our data we calculate the average branching ratio for charmed particles to decay into an electron plus additional particles to be (8.2±1.9)%.
No description provided.
The total cross section for e + e − annihilation into hadronic final states between 3.6 and 5.2 GeV was measured by the nonmagnetic inner detector of DASP, which has similar trigger and detection efficiencies for photons and charged particles. The measured difference in R = σ had / σμμ between 3.6 GeV and 5.2 GeV is ΔR = 2.1 ± 0.3. We observe three peaks at cm energies of 4.04, 4.16 and 4.417 GeV, the parameters of which, when interpreted as resonances, are given.
EXCLUDING CONTRIBUTION OF TAU HEAVY LEPTON.
INCLUDING CONTRIBUTION OF TAU HEAVY LEPTON.
A strong negative transverse polarization P z is found for forward produced lambdas observed in 10 and 16 GeV/ c K − p interactions. This indicates that exchanges of natural spin-parity are dominant in the production process. Using the polarization results, the d σ d u′ distributions for natural and unnatural spin-parity exchanges are derived. For unnatural exchanges, a dip is observed at u ′≅0.3 GeV 2 , which can be explained as a nonsense-wrong-signature zero of the N β trajectory. The value of P z for forward producted lambdas is constant with energy. This is in agreement with the triple-Regge model prediction, as is the fact that P z is constant as a function of M 2 s . The two non-transverse polarization components, P x and P y , have been measured and are found to be consistent with zero for all x values, unlike P z .
No description provided.
No description provided.
No description provided.
Measurements of inclusive scattering in the target-fragmentation region are extended to higher incident energy. The combined data set shows departures from an approach to the asymptotic scaling limit as A+Bs−12 that are significant even at the highest energies. When these departures are taken into account, the data approach a limit that is consistent with equal cross sections induced by particles and antiparticles and with Pomeron factorization. The corrections to A+Bs−12 are so large that detailed tests of Mueller-Regge relationships are not conclusive.
No description provided.
No description provided.
No description provided.