The reaction pp→pπ+N has been studied at three energies ( Tp=1520, 1805, and 2100 MeV) and six angles from 0° up to 17° (laboratory). Several narrow states have been observed in missing mass spectra at 1004, 1044, and 1094 MeV. Their widths are typically 1 order of magnitude smaller than the widths of N* or Δ. Possible biases are discussed. These masses are in good agreement with those calculated within a simple phenomenological mass formula based on color magnetic interaction between two colored quark clusters.
No description provided.
No description provided.
No description provided.
Bhabha scattering at a center-of-mass energy of 57.77 GeV has been measured using the VENUS detector at KEK TRISTAN. The precision is better than 1% in scattering angle regions of |cosθ|⩽0.743 and 0.822⩽cosθ⩽0.968. A model-independent scattering-angle distribution is extracted from the measurement. The distribution is in good agreement with the prediction of the standard electroweak theory. The sensitivity to underlying theories is examined, after unfolding the photon-radiation effect. The q2 dependence of the photon vacuum polarization, frequently interpreted as a running of the QED fine-structure constant, is directly observed with a significance of three standard deviations. The Z0 exchange effect is clearly seen when the distribution is compared with the prediction from QED (photon exchanges only). The agreement with the standard theory leads us to constraints on extensions of the standard theory. In all quantitative discussions, correlations in the systematic error between angular bins are taken into account by employing an error matrix technique.
Cross section is integrated over the cos(theta ) bin.
We have studied the process e<sup loc="post">+</sup>e<sup loc="post">−</sup> → nγ (n ≥ 2) at an average center-of-mass energy of 133 GeV using the L3 detector at LEP. For an integrated luminosity of 4.95 pb<sup loc="post">−1</sup> we find one γγγγ(γ) final state with only hard photons. The rates of both γγγ and γγ events are consistent with QED expectations. The cross section of the reaction e<sup loc="post">+</sup>e<sup loc="post">−</sup> → γγ(γ) in the polar range 16° < θγ < 164° is measured to be 22.6 ± 2.2 pb. Decays into photons of narrow scalar resonances with masses between 90 and 130 GeV are not observed. The observation of the event with four energetic photons is consistent with QED although the kinematic configuration of the photons is atypical.
Cross section for process E+ E- --> GAMMA GAMMA (GAMMA) with two hard photons.Error is purely statistical, systematic effects are neglected.
No description provided.
We have searched for a neutral $H$ dibaryon decaying via $H\rightarrow\Lambda n$ and $H\rightarrow\Sigma~0 n$. Our search has yielded two candidate events from which we set an upper limit on the $H$ production cross section. Normalizing to the inclusive $\Lambda$ production cross section, we find $(d\sigma_H/d\Omega)\,/\,(d\sigma_\Lambda/d\Omega) < 6.3\times 10~{-6}$ at 90\% C.L., for an $H$ of mass $\approx$\,2.15GeV/$c~2$.
No description provided.
Total and differential cross sections for the process e + e − → γγ ( γ ), and the total cross section for the process e + e − → γγγ , are measured at energies around 91 GeV using the data collected with the L3 detector from 1991 to 1993. We set lower limits, at 95% CL, on a contact interaction energy scale parameter Λ > 602 GeV, on the mass of an excited electron m e ∗ >146 GeV and on the QED cut-off parameters Λ + > 149 GeV and Λ _ > 143 GeV. Upper limits are also set o branching fractions of Z decaying into γγ , π ° and ηγ of 5.2 × 10 −5 , 5.2 × 10 −5 and 7.6 × 10 −5 respectively. The reactions e + e − → ℓ + ℓ − nγ (ℓ = e , μ , τ ) are studied using the data collected from 1990 to 1994. The data are consistent with the QED expectations.
No description provided.
No description provided.
No description provided.
With data corresponding to 142 pb −1 accumulated at s = 57.8 GeV by the AMY detector at TRISTAN we measure the cross section of the reactions e + e − → μ + μ − and e + e − → τ + τ − and the symmetry in the angular distributions. For the lowest order cross section we obtain σ μμ = 27.54 ± 0.65 ± 0.95 pb and σ ττ = 28.27 ± 0.87 ± 0.69 pb, and for the forward-backward asymmetry, A μμ = 0.303 ± 0.027 ± 0.008 and A ττ = −0.291 ± 0.040 ± 0.019. These measurements agree with the standard model. Assuming e − μ − τ univrsality we extract the vector and axial coupling constants | gν | = 0.00 ± 0.09 and | g A | = 0.476 ± 0.024. A fit of data to composite models places lower bounds (95% confidence level) on the compositeness scale of 2–4 TeV.
Lowest order cross section and forward-backward asymmetry.
Errors are statistical only.
Lowest order cross section and forward-backward asymmetry.
The total and the differential cross sections for the reaction e + e − → γγ ( γ ) have been measured with the DELPHI detector at LEP using an integrated luminosity of 36.9 pb −1 . The results agree with the QED predictions and consequently there is no evidence for non-standard channels with the same experimental signature. The lower limits obtained on the QED cutoff parameters are Λ + > 143 GeV and Λ − > 120 GeV, and the lower bound on the mass of an excited electron with an effective coupling constant λ γ = 1 is 132 GeV/ c 2 . Upper limits on the branching ratios for the decays Z 0 → γγ , Z 0 → π 0 γ , Z 0 → ηγ and Z 0 → γγγ have been determined to be 5.5 × 10 −5 , 5.5 × 10 −5 , 8.0 × 10 −5 , and 1.7 × 10 −5 respectively. All the limits are at the 95% confidence level.
1990 energies are 88.223, 89.222, 90.217, 91.217, 92.209, 93.208 and 94.202 GeV.. 1991 energies are 88.465, 89.460, 90.208, 91.225, 91.954, 92.953, and 93.703 GeV.. 1992 energy is 91.278 GeV.
Average of all data.
No description provided.
The process e + e − → μ + μ − and e + e − have been studied in the energy range s =52−61.4 GeV , using the TOPAZ detector at TRISTAN. From an integrated luminosity of L = 74.0 pb −1 , lowest-order cross sections and forward-backward asymmetries are measured to be 〈σ μμ 〈 = 25.4±0.9±1.2 pb , 〈A μμ 〉 = (−32.2±3.1±1.1)%, 〈σ ττ 〉 = 27.1±1.1±1.2 pb , 〈A ττ 〉 = (−33.9±4.9±1.0)% , at an average energy of s 〉=57.87 GeV . From the measured assymetry we derive axial vector couplings of a c a μ =0.96±0.09±0.01,and a c a τ =1.01±0.14±0.01±. These results are consistent with standard model expectations. Lower limits in the range 2–5 TeV (95%CL)are placed on compositeness scale parameters for leptons.
No description provided.
Additional 4.6 pct systematic uncertainty.
Additional 4.4 pct systematic uncertainty.
We have measured the total and differential cross sections of the reaction e + e − → γγ ( γ ) at center-of-mass energies around 91 GeV, with an integrated luminosity of 14.2 pb −1 . The results are in good agreement with QED predictions. We set lower limits, at 95% confidence level, on the QED cutoff parameters of Λ + > 139 GeV, Λ − > 108 GeV and on the mass of an excited electron of m e∗ > 127 GeV . We searched for Z 0 rare decays with photonic signitures in the final state. Upper limits, at 95% confidence level, for branching ratio of Z 0 decaying into π 0 γ / γγ , νγ and γγγ are 1.2 × 10 −4 , 1.8 × 10 −4 , 3.3 × 10 −5 respectively.
Measured cross section for the 1991 data.
Measured cross section for the 1990 data.
Measured differential cross sections of combined 1990 and 1991 data.
Analysing powers and differential cross sections for p p → π − π + and p p → K − K + have been measured over the full angular range using a polarised target at LEAR at 20 beam momenta from 360 to 1550 MeV/ c . Discrepancies in the normalisation of earlier d σ/ d Ω data at low momenta are clarified. Above 1000 MeV/ c , A 0N results confirm values close to +1 over most of the angular range for both reactions, in excellent agreement with earlier data of lower statistics. Below 1000 MeV/ c , where the analysing power is measured for the first time, large variations of A 0N with energy and angle are present.
No description provided.
No description provided.
No description provided.