We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy $\sqrt{s}=510$ GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range $0.23 \leq -t \leq 0.67$ GeV$^2$. We find that a constant slope $B$ does not fit the data in the aforementioned $t$ range, and we obtain a much better fit using a second-order polynomial for $B(t)$. The $t$ dependence of $B$ is determined using six subintervals of $t$ in the STAR measured $t$ range, and is in good agreement with the phenomenological models. The measured elastic differential cross section $\mathrm{d}\sigma/\mathrm{dt}$ agrees well with the results obtained at $\sqrt{s} = 546$ GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR $t$-range is $\sigma^\mathrm{fid}_\mathrm{el} = 462.1 \pm 0.9 (\mathrm{stat.}) \pm 1.1 (\mathrm {syst.}) \pm 11.6 (\mathrm {scale})$~$\mu\mathrm{b}$.
Top panel: The $pp$ elastic differential cross section $d\sigma/dt$ fitted with an exponential $A e^{-B(t)|t|}$. Bottom panel: Residuals (Data - Fit)/Error. Uncertainties on the data points are smaller than the symbol size. The vertical scale uncertainty of 2.5% is not included in in the full error.
Results of the exponential function $A e^{-B(t)|t|}$ fit to the elastic differential cross section data as well as the integrated fiducial cross section are listed. Also listed are the corresponding values of the statistical and systematic uncertainties. The scale (luminosity and trigger efficiency) uncertainty of 2.5% applicable to the fit parameter $A$ and fiducial cross section $\sigma^\mathrm{fid}_\mathrm{el}$ is not included in the full error.
We have measured absolute differential cross sections and analyzing powers for neutron-proton elastic scattering for momentum transfer 0.01 < | t |< 0.08 (GeV/ c ) 2 at several energies between 378 and 1135 MeV. The ionization chamber IKAR filled with methane was used as both a gas target and recoil detector. For the analyzing-power measurements the scattered neutron was detected in scintillation counters in coincidence with the recoil proton detected in IKAR. Special care was taken to ensure a precise absolute normalization of the cross sections, with overall systematic uncertainties of 4–7%.
TOTAL SYSTEMATIC UNCERTAINTIES IN D(SIG)/D(T)=6.4 PCT.
TOTAL SYSTEMATIC UNCERTAINTIES IN D(SIG)/D(T)=5.4 PCT.
TOTAL SYSTEMATIC UNCERTAINTIES IN D(SIG)/D(T)=6.5 PCT.
The differential cross section in free n-p forward elastic scattering has been measured for incident neutron energies of 378, 481, 582, 683, 784, 884, and 1085 MeV and for momentum transfer 0.01<‖t‖<0.08 (GeV/c)2. The experiment used a recoil-detector ionization chamber which served at the same time as a gas target. Special care has been taken to obtain a precise absolute normalization.
No description provided.
No description provided.
No description provided.
Absolute differential cross sections for pp elastic scattering have been measured at kinetic energies of 648, 746, 795, 843, 892, 942 and 992 MeV and for momentum transfer 0.006 < z . sfnctz . sfnc <0.040 (GeV/ c ) 2 . Both scattered and recoil protons were detected in coincidence. The slope parameters of the diffraction cone and the contribution of the spin-spin amplitudes to forward elastic pp scattering were determined.
No description provided.
No description provided.
No description provided.
Differential cross sections for π − p and pp elastic scattering have been measured at incident momenta ranging from 30 to 345 GeV and in the t range 0.002 (GeV/ c ) 2 ⩽ | t | ⩽ 0.04 (GeV/ c ) 2 . From the analysis of the data, the ratio ϱ ( t = 0) of the real to the imaginary parts of the forward scattering amplitude was determined together with the logarithmic slope b of the diffraction cone.
No description provided.
No description provided.
No description provided.
None
.
DATA IS DEPEND OF MODEL.
DATA IS DEPEND OF MODEL.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
DIFFERENT VALUES FOR SIG CORRESPONDS TO DIFFERENT MODELS.