Date

Measurements of Elastic Scattering in $\alpha^- \alpha$ and $\alpha$ - Proton Collisions at the {CERN} Intersecting Storage Rings

The CERN-Naples-Pisa-Stony Brook collaboration Ambrosio, M. ; Anzivino, G. ; Barbarino, G. ; et al.
Phys.Lett.B 113 (1982) 347-352, 1982.
Inspire Record 176959 DOI 10.17182/hepdata.30919

We measured the elastic scattering of αα at s = 126 GeV and of α p at s = 89 GeV . For αα , the differential cross section d σ /d t has a diffractive pattern minima at | t | = 0.10 and 0.38 GeV 2 . At small | t | = 0.05−0.07 GeV 2 , this cross section behaves like exp[(100 ± 10) t ]. Extrapolating a fit to the data to the optical point, we obtained for the total cross section α tot ( αα ) = 250 ± 50 mb and an integrated elastic cross section σ e1 ( αα ) = 45 ± mb. Another method of estimating σ tot ( αα ), based on measuring the interaction rate, yielded 295 ± 40 mb. For α p, d σ /d t has aminimum at | t | = 0.20 GeV 2 , and for 0.05 < | t | < 0.18 GeV 2 behaves like exp[(41 ± 2) t ]. Extrapolating this slope to | t | = 0, we found σ tot ( α p) = 130 ± 20 and σ e1 ( α p) = 20 ± 4mb. Results on pp elastic scattering at s = 63 GeV agree with previous ISR experiments.

5 data tables

Axis error includes +- 15/15 contribution.

Axis error includes +- 15/15 contribution.

METHOD 1 FOR SIG IS USING OPTICAL THEOREM. METHOD 2 FOR SIG IS BASED ON THE MEASURED LUMINOSITY-MONITOR CROSS SECTIONS.

More…

Transverse Momentum Spectra for Charged Particles at the CERN Proton anti-Proton Collider

The UA1 collaboration Arnison, G. ; Astbury, A. ; Aubert, Bernard ; et al.
Phys.Lett.B 118 (1982) 167-172, 1982.
Inspire Record 179520 DOI 10.17182/hepdata.30855

We have measured transverse momentum spectra up to 10 GeV/ c for charged particles produced centrally in proton-antiproton collisions at 540 GeV in the centre of mass at the CERN collider. Our results are compared with data at ISR energies and with the predictions of a QCD model. The charged particle spectrum shows a clear dependence on charged track multiplicity.

2 data tables

No description provided.

No description provided.


Charged Particle Multiplicity Distributions in Proton Anti-proton Collisions at 540-{GeV} Center-of-mass Energy

The UA1 collaboration Arnison, G. ; Astbury, A. ; Aubert, Bernard ; et al.
Phys.Lett.B 123 (1983) 108-114, 1983.
Inspire Record 182553 DOI 10.17182/hepdata.30779

Results on charged particle production in pp̄ collision at s 1 2 = 540 GeV are presented. The data were obtained at the CERN pp̄ collider using the UA1 detector, operated without magnetic field. The central particle density is 3.3 + - 0.2 per unit o pseudo-rapidity for non-diffractive events. KNO scaling of the multiplicity distributions withresults from ISR energies is observed.

6 data tables

Pseudorapidity density distribution for all charged multiplicities corrected for acceptance and backgrounds by excluding NSD events. Data have been read from the plot.

More…

Elastic and total cross-section measurement at the CERN proton-antiproton collider

The UA1 collaboration Arnison, G. ; Astbury, A. ; Aubert, Bernard ; et al.
Phys.Lett.B 128 (1983) 336, 1983.
Inspire Record 190339 DOI 10.17182/hepdata.30668

Proton-antiproton elastic scattering at CM energy 540 GeV has been studied in the t -range 0.04 < − t < 0.45 GeV 2 . The data are well fitted by the form exp ( bt ) with b = 17.1 ± 1.0 GeV −2 for | t | = 0.04 − 0.18 GeV su 2 and b = 13.7 ± 0.2 ± 0.2 GeV −2 for | t | = 0.21−0.45 GeV 2 . A luminosity measurement combined with the optical theorem gives σ tot = 67.6 ± 5.9 ± 2.7 mb and σ e1 / σ tot = 0.209 ± 0.018 ± 0.008.

3 data tables

No description provided.

No description provided.

ELASTIC RATIO ASSUMES RHO=0.


Measurement of the Proton - anti-Proton Total and Elastic Cross-Sections at the CERN SPS Collider

The UA4 collaboration Bozzo, M. ; Braccini, P.L. ; Carbonara, F. ; et al.
Phys.Lett.B 147 (1984) 392-398, 1984.
Inspire Record 203148 DOI 10.17182/hepdata.49643

The proton-antiproton total cross section was measured at the CM energy √s = 546 GeV . The result is σ tot = 61.9± 1.5 mb . The ratio of the elastic to the total cross section is σ e ℓ / σ tot = 0.215±0.005. A comparison to the lower energy data shows that the increase of the total cross section with energy is very close to a log 2 s behaviour.

2 data tables

CROSS SECTIONS ASSUMING RHO = 0.15.

RATIO OF ELASTIC TO TOTAL CROSS SECTION.


A MEASUREMENT OF ALPHA-ALPHA ELASTIC SCATTERING AT THE CERN ISR

The Axial Field Spectrometer collaboration Akesson, T. ; Albrow, M.G. ; Almehed, S. ; et al.
Phys.Lett.B 152 (1985) 140-144, 1985.
Inspire Record 206315 DOI 10.17182/hepdata.30430

We present measurements of the αα elastic scattering differential cross section at √ s = 126 GeV in the range 0.05 ⩽ ‖ t ‖

3 data tables

ERRORS ARE STATISTICAL ONLY.

EXPONENTIAL FIT TO CROSS SECTION BELOW T = 0.075 GEV**2.

OPTICAL THEOREM CALCULATION OF THE TOTAL CROSS SECTION ASSUMING RHO IS ZERO.


TOTAL, ELASTIC AND INCLUSIVE SINGLE DIFFRACTIVE CROSS-SECTIONS IN ALPHA-ALPHA COLLISIONS AT THE CERN INTERSECTING STORAGE RINGS

Lloyd Owen, D. ; Paternoster, G. ; Patricelli, S. ; et al.
Nucl.Phys.B 274 (1986) 685-706, 1986.
Inspire Record 227125 DOI 10.17182/hepdata.33694

We present measurements of the total interaction cross section and of the single-diffractive dissociation cross section in αα collisions at √ s = 126 GeV. The result obtained for the total cross section, σ tot = (315±18) mb, is a substantial improvement on the precision of earlier measurements. Earlier elastic data were re-analysed, incorporating, through the optical theorem, the present σ tot measurement, resulting in improved determinations of the forward slope, b − t <0.07 = (87±4) GeV −2 , and of the integrated elastic cross section, σ el = (58±6) mb. The single-diffractive differential cross section falls exponentially with momentum transfer at small values of t with a slope b sd = (19.3 ± 0.6) GeV −2 . The integrated single-diffractive cross section is σ sd = (16.6±2.5) mb. The topology of charged tracks resulting from the disintegration of the α in single-diffractive events reveals a two-component distribution. The cross section data are compared with multiple-scattering models.

2 data tables

Total cross section by total rate method. Systematic errors included.

Reanalysis using data from ISR experiments R-418, and R-807.


Production of Four Prong Final States in Photon-photon Collisions

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.D 37 (1988) 28, 1988.
Inspire Record 261630 DOI 10.17182/hepdata.3824

Results are presented on the exclusive production of four-prong final states in photon-photon collisions from the TPC/Two-Gamma detector at the SLAC e+e− storage ring PEP. Measurement of dE/dx and momentum in the time-projection chamber (TPC) provides identification of the final states 2π+2π−, K+K−π+π−, and 2K+2K−. For two quasireal incident photons, both the 2π+2π− and K+K−π+π− cross sections show a steep rise from threshold to a peak value, followed by a decrease at higher mass. Cross sections for the production of the final states ρ0ρ0, ρ0π+π−, and φπ+π− are presented, together with upper limits for φρ0, φφ, and K*0K¯ *0. The ρ0ρ0 contribution dominates the four-pion cross section at low masses, but falls to nearly zero above 2 GeV. Such behavior is inconsistent with expectations from vector dominance but can be accommodated by four-quark resonance models or by t-channel factorization. Angular distributions for the part of the data dominated by ρ0ρ0 final states are consistent with the production of JP=2+ or 0+ resonances but also with isotropic (nonresonant) production. When one of the virtual photons has mass (mγ2=-Q2≠0), the four-pion cross section is still dominated by ρ0ρ0 at low final-state masses Wγγ and by 2π+2π− at higher mass. Further, the dependence of the cross section on Q2 becomes increasingly flat as Wγγ increases.

12 data tables

UNTAGGED DATA.

TAGGED DATA, RESULTS OBTAINED USING TRANSVERSE-TRANSVERSE LUMINOSITY ONLY. DATA FOR Q2=0 ARE FROM UNTAGGED SAMPLE, ERRORS DUE TO RELATIVE NORMALISATION OF THESE SAMPLES IS INCLUDED INTO ERRORS QUOTED.

UNTAGGED DATA.

More…

Charged Particle Correlations in $\bar{P} P$ Collisions at c.m. Energies of 200-{GeV}, 546-{GeV} and 900-{GeV}

The UA5 collaboration Ansorge, R.E. ; Åsman, B. ; Booth, C.N. ; et al.
Z.Phys.C 37 (1988) 191-213, 1988.
Inspire Record 263399 DOI 10.17182/hepdata.15683

We present data on two-particle pseudorapidity and multiplicity correlations of charged particles for non single-diffractive\(p\bar p - collisions\) at c.m. energies of 200, 546 and 900 GeV. Pseudorapidity correlations interpreted in terms of a cluster model, which has been motivated by this and other experiments, require on average about two charged particles per cluster. The decay width of the clusters in pseudorapidity is approximately independent of multiplicity and of c.m. energy. The investigations of correlations in terms of pseudorapidity gaps confirm the picture of cluster production. The strength of forward-backward multiplicity correlations increases linearly with ins and depends strongly on position and size of the pseudorapidity gap separating the forward and backward interval. All our correlation studies can be understood in terms of a cluster model in which clusters contain on average about two charged particles, i.e. are of similar magnitude to earlier estimates from the ISR.

3 data tables

Correlation strength for different choices of pseudorapidity intervals.

Correlation strength as a function of the central gap size for the symmetric data.

Correlation strength as a function of the centre of the separating gap for a gap size of 2.


A Determination of the strong coupling constant alpha-s from W production at the CERN p anti-p collider

The UA2 collaboration Alitti, J. ; Ambrosini, G. ; Ansari, R. ; et al.
Phys.Lett.B 263 (1991) 563-572, 1991.
Inspire Record 315374 DOI 10.17182/hepdata.29394

The large sample of W→eν events collected by the UA2 experiment at the CERN pp̄ collider between 1988 and 1990 has been used to determine the strong coupling constant α s . From a measurement of the ratio of the production rate of W events with one jet to that with no jets, α s has been extracted to second order in the MS ̄ scheme: α s (M 2 w )=0.123±0.0.18( stat .)±0.017 ( syst .) .

1 data table

ALP_S extracted to second order in the MSbar scheme.