We have measured the cross section for inverse muon decay in the CERN neutrino wide band beam. From 4808 events observed in the CHARM II detector we derived for the Born term of the asymptotic cross section slope the result (18.16±1.36) × 10 −42 cm 2 GeV −1 . This cross section is in good agreement with the standard model prediction and allows to constrain the scalar coupling of the electron and muon to their neutrinos to | g LL S | 2 <0.405 at 90% CL.
Corrected asymptotic cross section slope. Error is quadratically combined statistical and systematic.
We have measured the partial width and forward-backward charge asymmetry for the reaction e + e - →Z 0 →μ + μ - (γ). We obtain a partial width Γ μμ of 83.3±1.3(stat)±0.9(sys) MeV and the following values for the vector and axial vector couplings: g v =−0.062 −0.015 +0.020 and g A =−0.497 −0.005 +0.005 . From our measurement of the partial width and the mass of the Z 0 boson we determine the effective electroweak mixing angle, sin 2 θ w =0.232±0.005, and the neutral current coupling strength parameter, ϱ =0.998±0.016.
No description provided.
Forward backward charge asymmetry.
No description provided.
We report on the first observation of neutrino induced production of muon pairs in the electromagnetic field of a nucleus. The data has been obtained using the CHARM II detector exposed to the CERN wideband neutrino and antineutrino beams. A clear signal of 55 ± 16 events is seen in a sample of dimuons of opposite charge without visible recoil at the vertex. The cross section is determined and found to be in agreement with the standard model prediction.
No description provided.
The reaction γγ→π+π-π+π-π0 has been studied using the JADE detector at PETRA. The cross sections for γγ→ωπ+- and for γγ→ωρ0- are given. We observe no peak in these cross sections in the regionWγγ=1.9–2.0 GeV.
No description provided.
The production of Λ,\(\bar \Lambda\) andKs0 has been studied in 200 GeV/nucleonp+S and S+S collisions in the streamer chamber of the NA35 experiment at the CERN SPS. Significant enhancement of the multiplicities of all observed strange particles relative to negative hadrons was observed in central S+S collisions, as compared top+p andp+S collisions. The latter collisions show no overall (relative) strangeness enhancement overp+p, but the rapidity distributions and hadron multiplicities indicate some secondary cascading production of Λ particles in thep+S andp+Au collisions. The Λ polarization in central S+S collisions was found to be compatible with zero up topT=2 GeV/c.
Tranverse kinetic energy spectra of neutral strange particles in P SU collisions.
Tranverse kinetic energy spectra of neutral strange particles in P SU collisions.
Tranverse kinetic energy spectra of neutral strange particles in SU SU collisions.
We study the inclusive momentum distribution of charged particles in multihadronic events produced in e + e − annihilations at E CM ∼ M (Z 0 ). We find agreement with the analytical formulae for gluon production that include the phenomena of soft gluon interference. Using data from CM energies between 14 and 91 GeV, we study the dependence of the inclusive momentum distribution on the centre of momentum energy. We find that the analytical formulae describe the data over the entire energy range. Both the momentum distribution at a fixed energy and the change with energy are described by QCD shower Monte Carlo's which include either coherent gluon branchings or string fragmentation. Simple incoherent models with independent fragmentation fail to reproduce the energy dependence and momentum spectra.
Statistical errors only. Overall systematic error of 5%.
We have studied the ρ0 production rate in the reaction ξξ→3π+3π− in the energy range 1.6≦Wγγ≦7.5 GeV with the CELLO detector at PETRA. Our analysis points to a substantial yield of ρ0ρ0π+π− events in particular atWγγ>4.0 GeV. We give cross sections for the ρ02π+2π− and ρ0ρ0π+π− final states and calculate upper limits for the reaction γγ→ρ0ρ0 (1700) →ρ0ρ0π+π−.
Data from CA model analysis.
Data from NCA model analysis.
Upper limits to RHO0 RHO(1700)0 cross section with 95 pct confidence limits. Data read from graph.
The yield of J/ψ and ψ’ vector-meson states has been measured for 800-GeV protons incident on deuterium, carbon, calcium, iron, and tungsten targets. A depletion of the yield per nucleon from heavy nuclei is observed for both J/ψ and ψ’ production. This depletion exhibits a strong dependence on xF and pt. Within experimental errors the depletion is the same for the J/ψ and the ψ’.
Ratio of heavy nucleus to deuterium yields. A is the mass number of the target nucleus.
Ratio of heavy nucleus to deuterium yeilds. A is the mass number of the target nucleus.
Ratio of heavy nucleus to deuterium yeilds. A is the mass number of the target nucleus.
We present a study of jet multiplicities based on 37 000 hadronic Z 0 boson decays. From this data we determine the strong coupling constant α s =0.115±0.005 ( exp .) −0.010 +0.012 (theor.) to second order QCD at √ s =91.22GeV.
Errors are combined statistical and systematic uncertainties.
No description provided.
We have measured the cross section for e + e − →hadrons over the center of mass energy range of the Z 0 peak, from 88.22 to 95.03 GeV. We determine the Z 0 mass M z =91.164±0.013 (experiment) ±0.030 (LEP) GeV. Within the framework of the standard model we determine the invisible width, Γ invisible =0.502±0.018 GeV, and the number of light neutrino species, N ν =3.01±0.11. We exclude the existence of a supersymmetric scalar neutrino having a mass less than 31.4 GeV, at the 95% confidence level. We performed a model independent combined fit to the e + e − →hadrons and e + e − → μ + μ − data to determine total width, leptonic width and hadronic width of the Z 0 .
Cross sections from 1990 data. Additional systematic error 1.5 pct.
Cross sections from 1989 data. This data has been rescaled by 0.96 from original publication PL B237 (90) 136. Additional systematic error 2.0 pct.