We have measured the elastic cross section for pp, p¯p, π+p, π−p, K+p, and K−p scattering at incident momenta of 70, 100, 125, 150, 175, and 200 GeV/c. The range of the four-momentum transfer squared t varied with the beam momentum from 0.0016≤−t≤0.36 (GeV/c)2 at 200 GeV/c to 0.0018≤−t≤0.0625 (GeV/c)2 at 70 GeV/c. The conventional parametrization of the t dependence of the nuclear amplitude by a simple exponential in t was found to be inadequate. An excellent fit to the data was obtained by a parametrization motivated by the additive quark model. Using this parametrization we determined the ratio of the real to the imaginary part of the nuclear amplitude by the Coulomb-interference method.
No description provided.
A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.
The measured differential elastic cross section. In addition to the statistical and total systematic uncertainties, the following 22 systematic shifts are given, which are included in the profile fit with their signs: -- Constraints: Beam optics uncertainty obtained by varying the ALFA constraints in the optics fit -- QScan: Variation by +/- 0.1 % of the quadrupole strength -- Q2: Fit of the strength of Q2 using the best value for the strength of Q1 and Q3 -- Q5Q6: Variation of the strength of Q5 and Q6 by -0.2% as indicated by machine constraints -- MadX: Uncertainty related to the beam transport replacing matrix transport by MadX PTC tracking -- Qmisal: Uncertainty due to the mis-alignment of the quadrupoles in the beam line -- Q1Q3: Propagation of the optics fit uncertainty in the strenght of Q1 and Q3 on the differential elastic cross section -- Aopt: Alignment uncertainty from the optimization procedure -- Offv: Alignment uncertainty related to the vertical beam center offset -- Offh: Alignment uncertainty related to the horizontal beam center offset -- Ang: Alignment uncertainty related to the detector rotation in the x-y plane -- BGn: Uncertainty from the background normalization -- BGs: Uncertainty from the background shape -- MCres: Error from modelling of the detector response -- Slope: Residual dependence on the physics model estimated by varying the nuclear slope in the simulation by +/- 1 GeV^-2 -- Emit: Uncertainty from the emittance used to calculate beam divergence in the simulation -- Unf: Unfolding uncertainty from the data-driven closure test -- Trac: Uncertainty from the variation of the track reconstruction selection cuts -- Xing: Uncertainty from residual crossing angle in the horizontal plane -- Eff: Uncertainty from the reconstruction efficiency -- Lumi: Luminosity uncertainty (+/- 1.5%) -- Ebeam: Uncertainty from the nominal beam energy (+/- 0.65%) Small differences in the values given here compared to the published version are related to insignificant rounding issues.
A direct experimental reconstruction of the five complex pp elastic-scattering amplitudes has been performed at 447, 497, 517, 539, and 579 MeV. The reconstruction is done over the c.m. angles from 38° to 90° and is based on either 11 or 15 spin observables depending on the angular range. The reconstructed amplitudes are presented and compared to phase-shift analysis. A smooth energy behavior is observed for the amplitudes.
No description provided.
No description provided.
No description provided.
Accelerating polarized protons to 22 GeV/c at the Brookhaven Alternating Gradient Synchro- tron required both extensive hardware modifications and a difficult commissioning process. We had to overcome 45 strong depolarizing resonances to maintain polarization up to 22 GeV/c in this strong-focusing synchrotron. At 18.5 GeV/c we measured the analyzing power A and the spin-spin correlation parameter Ann in large- P⊥2 proton-proton elastic scattering, using the polarized proton beam and a polarized proton target. We also obtained a high-precision measurement of A at P⊥2=0.3 (GeV/c)2 at 13.3 GeV/c. At 18.5 GeV/c we found that Ann=(-2±16)% at P⊥2=4.7 (GeV/c)2, where it was about 60% near 12 GeV at the Argonne Zero Gradient Synchrotron. This sharp change suggests that spin-spin forces may have a strong and unexpected energy dependence at high P⊥2.
Interactions initiated by 3-Bev protons of the Brookhaven Cosmotron were studied by photoemulsion technique. With appropriate criteria, 115 events are attributed to interactions of the incident beam protons with hydrogen nuclei (∼55%) and with bound protons of other nuclei (∼45%). A detailed analysis allowed the subdivision of the 115 events in categories, according to the number of π mesons (N>~0) produced in the collision. The ratio of elastic scattering to the total number of events was estimated to be σelσtotal=0.20−0.07+0.04. The observed cross section for pure elastic scattering is σel=8.9±1.0 mb. The percentages of single, double, triple, and quadruple π-meson production are respectively: 34−20+22; 35.6−23+20; 9.6−4+6; ∼1.0+3.5. Among the 20 most probable cases of single π-meson production—the estimated ratio of π+ to π0 is σπ+σπ0=5.3−1.4+0.3. The experimental results are not in agreement with the Fermi statistical-model theory (in particular the lower limit for the experimental ratio of triple to single production is given by σ3σ1>∼110 in contrast with the predicted ratio σ3σ1=167) but are not inconsistent with the Peaslee excited-state-model theory.
The total cross sections σT of p, p¯, π±, and K± on hydrogen and deuterium have been measured between 6 and 22 GeVc at intervals of 2GeVc to an accuracy greater than previously reported. The method utilized was a conventional good-geometry transmission experiment with scintillation counters subtending various solid angles at targets of liquid H2 and D2. With the increase in statistical accuracy of the data, it was found that a previously adopted procedure of linearly extrapolating to zero solid angle the partial cross sections measured at finite solid angles was not a sufficiently accurate procedure from which to deduce σT. The particle-neutron cross sections are derived by applying the Glauber screening correction to the difference between the particle-deuteron and particle-proton cross sections. The cross sections σT(π+d) and σT(π−d) are equal at all measured momenta, which confirms the validity of charge symmetry up to 20GeVc. Results are presented showing the variation of cross sections with momentum; evidence is presented for a small but significant decrease in σT(pp) [and σT(pn)] in the momentum region above 12GeVc.
Results are reported concerning the charged-particle multiplicity distribution obtained in an exposure of the high-resolution hydrogen bubble chamber LEBC to a beam of 800 GeV protons at the Fermilab MPS. This is the first time that such data have been available at this energy. The distribution of the number n ch of charged particles produced in inelastic interactions obeys KNO-scaling. The average multiplicity is 〈 n ch 〉 = 10.26±0.15. For n ch ⩾8 the data can be well fitted to a negative binomial. The difference between the overall experimental multiplicity distribution and that resulting from the latter fit is in agreement with the contribution expected from diffractive processes.
No description provided.
Angular distributions of proton-proton elastic scattering have been measured for incident beam momenta of 10.0, 12.0, 14.2 and 24.0 GeV/ c over a range of lab scattering angles from 12 to 152 mrad. This is equivalent to a range of four-momentum transfer squared from about 0.1 to 6.7 GeV 2 at the highest momentum. Nucleon resonance production in the two-body reaction p + p → p + X has been studied at 24.0 GeV/ c incident momentum from 13.5 to 112 mrad by measuring the proton momentum spectra from the elastic peak down to a momentum corresponding to a missing mass of about 2.6 GeV. The new data are compared with previous results and theoretical models.
The single-pion production reactions $pp\to d\pi^+$, $pp\to np\pi^+$ and $pp\to pp\pi^0$ were measured at a beam momentum of 0.95 GeV/c ($T_p \approx$ 400 MeV) using the short version of the COSY-TOF spectrometer. The implementation of a central calorimeter provided particle identification, energy determination and neutron detection in addition to time-of-flight and angle measurements. Thus all pion production channels were recorded with 1-4 overconstraints. The total and differential cross sections obtained are compared to previous data and theoretical calculations. Main emphasis is put on the discussion of the $pp\pi^0$ channel, where we obtain angular distributions different from previous experimental results, however, partly in good agreement with recent phenomenological and theoretical predictions. In particular we observe very large anisotropies for the $\pi^0$ angular distributions in the kinematical region of small relative proton momenta revealing there a dominance of proton spinflip transitions associated with $\pi^0$ $s$- and $d$-partial waves and emphasizing the important role of $\pi^0$ d-waves.
None