The ratio R of the differential cross sections for π - p→ η ′n and π - p → η n has been measured with high statistics and small systematic errors at 8.45 GeV/ c . R is generally interpreted as the relative content of nonstrange, ground-state quarks in η' and η. We find that R decreases with increasing ⋎ t ⋎; however, extrapolation to t =0 gives R (0) = 0.672 ± 0.032 (statistical) ± 0.47 (systematic) for the dominant spin flip cross sections, and R (0) = 0.500 ± 0.035 for the spin non-flip, in excellent agreement with results at higher energy. An improved value of the branching fraction ( η '→ γγ )/( η '→all) of 0.0200 ± 0.0018 is obtained.
Cross sections, differential cross sections, density matrix elements and statistical tensors are given for the reactions π + p → ( ϱ 0 , ω ) Δ ++ at 13.2 GeV/ c . A discussion of the results in terms of particle exchanges, quark model or dipole coupling constraints, and the equal phase hypothesis is presented in some detail for the high statistics ϱ 0 Δ ++ channel.
The missing mass spectrum opposite the proton in a 750 000 picture exposure, 13 GeV/ c π + p bubble chamber experiment, is investigated in two and four pion channels for structures observed or denied by boson spectrometers at the same energy in the reaction π − p→X − p.
A recent spin-parity analysis of the π + π + π − system formed opposite a proton and a coherent deuteron by incident 13 GeV/ c 2 π + mesons, is extended to a three-pion mass of 1.9 GeV/ c . Relative proportions of the contributing partial waves are presented, from threshold, and the A 3 region is discussed in detail. Contrary to results with the (3 π ) − system, a change in phase is noted for the 2 − amplitude decaying to f 0 π + via am S-wave.
We have observed the production of high-mass I=32 baryon resonances in π+p interactions at 13 GeV/c. The most prominent of these is found to be the F37 Δ(1950). It is produced by one-pion exchange and the data are well described by on-shell π+p phase shifts. Decays into pπ+ and pπ+π0 are observed and the Δ(1950) is found to have a mass 1.880 ± 0.010 GeV and width of 0.180 ± 0.030 GeV with a production cross section of 43 ± 4 μb.
We report results from a study of π−p→ω0n at 6.0 GeV/c based on 28 000 events from a charged and neutral spectrometer. Background under the ω0 is only 7%, a large improvement over deuterium-bubble-chamber work. Density matrix elements, projected cross sections, and effective trajectories for natural and unnatural exchanges are presented.
Analysis of 5180 ν¯ interactions shows a variation with energy of the inelasticity (y) distributions over the range 10 to 220 GeV and a dependence on the scaling variable x. From these data are obtained the approximate x dependence of the sea quarks and a limit on the strength of right-handed coupling between the u quark and a massive b quark.
We have measured the differential cross section for π−p→η0n at 6.0 GeV/c from 6730 very clean events in which the decay η→π+π−π0 was detected. The high statistics reveals a sizable forward turnover, implying a dominance of the helicity-flip amplitude. A precisely determined A2 trajectory, linear for |t|<1.0 (GeV/c)2, is found from combining our data with those at energies up to 101 GeV.
A spin and parity decomposition is presented of the (π+π+π−) final state formed opposite a proton by incident 13-GeV/c π+ mesons. The A3 enhancement is identified as the 2− amplitude decaying to f0π+ via an S wave. A change in relative phase is noted between the 2−S amplitude and the other principal contributions; this is not incompatible with analyses of the (3π)− system. The method employs the University of Illinois three-body partialwave analysis program.
This paper presents the final results on charged-current neutrino and antineutrino interactions with nuclei from experiment E-310 at Fermi National Accelerator Laboratory. The data sample, consisting of 21 578 neutrino-induced and 7358 antineutrino-induced events within the fiducial region in the energy range 20<E<325 GeV, is exhibited first to demonstrate the basic properties and kinematic regions represented. The dependence of the nucleon structure functions on the dimensionless variable x and on neutrino energy is then described. Lastly, the variations of the structure functions with x and Q2 are presented. The emphasis throughout has been to understand the effects on the final results of uncertainties in the systematic corrections required by the data. Comparisons with the results of other neutrino experiments are made.