Inclusive double-helicity asymmetries in neutral pion and eta meson production in $\vec{p}+\vec{p}$ collisions at $\sqrt{s}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 90 (2014) 012007, 2014.
Inspire Record 1282448 DOI 10.17182/hepdata.64716

Results are presented from data recorded in 2009 by the PHENIX experiment at the Relativistic Heavy Ion Collider for the double-longitudinal spin asymmetry, $A_{LL}$, for $\pi^0$ and $\eta$ production in $\sqrt{s} = 200$ GeV polarized $p$$+$$p$ collisions. Comparison of the $\pi^0$ results with different theory expectations based on fits of other published data showed a preference for small positive values of gluon polarization, $\Delta G$, in the proton in the probed Bjorken $x$ range. The effect of adding the new 2009 \pz data to a recent global analysis of polarized scattering data is also shown, resulting in a best fit value $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}} = 0.06^{+0.11}_{-0.15}$ in the range $0.05<x<0.2$, with the uncertainty at $\Delta \chi^2 = 9$ when considering only statistical experimental uncertainties. Shifting the PHENIX data points by their systematic uncertainty leads to a variation of the best-fit value of $\Delta G^{[0.05,0.2]}_{\mbox{DSSV}}$ between $0.02$ and $0.12$, demonstrating the need for full treatment of the experimental systematic uncertainties in future global analyses.

9 data tables

PI0 ASYM(LL) measurements from 2005.

PI0 ASYM(LL) measurements from 2006.

PI0 ASYM(LL) measurements from 2009.

More…

First measurement of A(N) at s**(1/2) = 200-GeV in polarized proton proton elastic scattering at RHIC.

Bultmann, S. ; Chiang, I.H. ; Chrien, R.E. ; et al.
Phys.Lett.B 632 (2006) 167-172, 2006.
Inspire Record 688172 DOI 10.17182/hepdata.31570

We report on the first measurement of the single spin analyzing power (A_N) at sqrt(s)=200GeV, obtained by the pp2pp experiment using polarized proton beams at the Relativistic Heavy Ion Collider (RHIC). Data points were measured in the four momentum transfer t range 0.01 < |t| < 0.03 (GeV/c)^2. Our result, averaged over the whole t-interval is about one standard deviation above the calculation, which uses interference between electromagnetic spin-flip amplitude and hadronic non-flip amplitude, the source of A_N. The difference could be explained by an additional contribution of a hadronic spin-flip amplitude to A_N.

1 data table

The single spin analyzing power for 3 T intervals.


Analysing power A(y) in the reaction p(pol.) p --> p p eta close to threshold.

Winter, P. ; Adam, H.H. ; Bauer, F. ; et al.
Phys.Lett.B 544 (2002) 251-258, 2002.
Inspire Record 599591 DOI 10.17182/hepdata.31686

Measurements of the eta meson production with a polarised proton beam in the reaction p(pol) p --> p p eta have been carried out at an excess energy of Q = 40 MeV. The dependence of the analysing power A_y on the polar angle theta^*_q of the eta meson in the center of mass system (CMS) has been studied. The data indicate the possibility of an influence of p- and d-waves to the close to threshold eta production.

1 data table

Averaged value of the analyzing power and cross section as a function of the emmission angle of the ETA meson is the CM system.


Measurement of analyzing powers of pi + and pi - produced on a hydrogen and a carbon target with a 22-GeV/c incident polarized proton beam

Allgower, C.E. ; Krueger, K.W. ; Kasprzyk, T.E. ; et al.
Phys.Rev.D 65 (2002) 092008, 2002.
Inspire Record 587580 DOI 10.17182/hepdata.22221

The analyzing powers of π+ and π− were measured using an incident 22−GeV/c transversely polarized proton beam at the Brookhaven Alternating Gradient Synchrotron. A magnetic spectrometer measured π± inclusive asymmetries on a hydrogen and a carbon target. An elastic polarimeter with a CH2 target measured pp elastic-scattering asymmetries to determine the beam polarization using published data for the pp elastic analyzing power. Using the beam polarization determined from the elastic polarimeter and asymmetries from the inclusive spectrometer, analyzing powers AN for π± were determined in the xF and pT ranges (0.45–0.8) and (0.3–1.2 GeV/c), respectively. The analyzing power results are similar in both sign and character to other measurements at 200 and 11.7 GeV/c, confirming the expectation that high-energy pion inclusive analyzing powers remain large and relatively energy independent. This suggests that pion inclusive polarimetry may be a suitable method for measuring future beam polarizations at BNL RHIC or DESY HERA. Analyzing powers of π+ and π− produced on hydrogen and carbon targets are the same. Various models to explain inclusive analyzing powers are also discussed.

7 data tables

Analyzing power measurements for PI+ and PI- production on the carbon target at incident momentum 21.6 GeV. See text of article for definitions of method 'A' and 'B'.

Analyzing power measurements for inclusive PI- production from the hydrogen target.

Analyzing power measurements for inclusive PI+ production from the hydrogen target.

More…

The p p elastic scattering analyzing power measured with the polarized beam and the unpolarized target between 1.98-GeV and 2.80-GeV.

Allgower, C.E. ; Ball, J. ; Beddo, M. ; et al.
Nucl.Phys.A 637 (1998) 231-242, 1998.
Inspire Record 478006 DOI 10.17182/hepdata.36350

A polarized proton beam extracted from SATURNE II was scattered on an unpolarized CH 2 target. The angular distribution of the beam analyzing power A oono was measured at large angles from 1.98 to 2.8 GeV and at 0.80 GeV nominal beam kinetic energy. The same observable was determined at the fixed mean laboratory angle of 13.9° in the same energy range. Both measurements are by-products of an experiment measuring the spin correlation parameter A oon .

19 data tables

Analysing power measurements at a fixed laboratory angle of 13.9 degrees.

No description provided.

No description provided.

More…

Measurements of angular distributions of differential cross-sections and analyzing powers of the reaction polarized p p ---> d pi+ between 1.3-GeV and 2.4-GeV

Yonnet, J. ; Abegg, R. ; Boivin, M. ; et al.
Nucl.Phys.A 562 (1993) 352-364, 1993.
Inspire Record 353857 DOI 10.17182/hepdata.36568

We have measured angular distributions of differential cross sections and analyzing powers ( A y ) of the reaction p p → d π + at six incident proton energies between 1.3 and 2.4 GeV. They confirm the rapid variations at √ s = 2.65 GeV suggested by earlier experiments. Deviations from a monotonic behavior are also found in the excitation functions of the differential cross section at t = 0 or where Θ π + (c.m.) = 0°. Structures clearly appear at √ s = 2.4 and 2.65 GeV, in some coefficients of the associated Legendre function expansions of A y .

12 data tables

No description provided.

No description provided.

No description provided.

More…

Energy dependence of the analyzing power for the p p ---> pi+ d reaction in the energy region 500-MeV - 800-MeV

Yoshida, H.Y. ; Shimizu, H. ; Ohnuma, H. ; et al.
Nucl.Phys.A 541 (1992) 443-452, 1992.
Inspire Record 320645 DOI 10.17182/hepdata.36702

The energy dependence of the analyzing power A y for the pp → π + d reaction was measured during polarized beam acceleration from 500 to 800 MeV, using an internal target inserted into the beam every acceleration cycle. The measurements were made with the pion laboratory angle fixed at 68° and with incident proton energy bins varying from 10 to 30 MeV in width. The statistical accuracy per bin is ΔA y ⋍ 0.06 .

1 data table

Statistical errors onnly.


Energy dependent measurements of the p p elastic analyzing power and narrow dibaryon resonances

Kobayashi, Y. ; Kobayashi, K. ; Nakagawa, T. ; et al.
Nucl.Phys.A 569 (1994) 791-820, 1994.
Inspire Record 320015 DOI 10.17182/hepdata.38528

The energy dependence of the pp elastic analyzing power has been measured using an internal target during polarized beam acceleration. The data were obtained in incident-energy steps varying from 4 to 17 MeV over an energy range from 0.5 to 2.0 GeV. The statistical uncertainty of the analyzing power is typically less than 0.01. A narrow structure is observed around 2.17 GeV in the two-proton invariant mass distribution. A possible explanation for the structure with narrow resonances is discussed.

1 data table

Statistical errors only.


Analyzing Power Measurements of Coulomb Nuclear Interference With the Polarized Proton and Anti-proton Beams at 185 GeV/c

The E581/704 collaboration Akchurin, N. ; Carey, David C. ; Coleman, R. ; et al.
Phys.Lett.B 229 (1989) 299-303, 1989.
Inspire Record 280476 DOI 10.17182/hepdata.29782

The analyzing power A N of proton-proton, proton-hydrocarbon, and antiproton-hydrocarbon, scattering in the Coulomb-nuclear interference region has been measured using thhe 185 GeV/ c Fermilab polarized-proton and -antiproton beams. The results are found to be consistent with theoretical predictions within statistical uncertainties.

3 data tables

No description provided.

Data from hydrocarbon target.

Data from hydrocarbon target.


Measurement of the Polarization of the Proton Proton Elastic Reaction at Small Scattering Angles Between 940-{MeV} and 2440-{MeV}

Dalla Torre-Colautti, S. ; Birsa, R. ; Bradamante, F. ; et al.
Nucl.Phys.A 505 (1989) 561-582, 1989.
Inspire Record 288841 DOI 10.17182/hepdata.36886

We have measured the asymmetry of elastic pp scattering at small scattering angles (30–100 mrad) in the Coulomb-nuclear interference region, using the polarized proton beam of Saturne II, a segmented scintillator active target, and two telescopes of multiwire proportional chambers. Results are given at four energies — 940, 1000, 1320 and 2440 MeV-and are compared with phase-shift calculations.

4 data tables

No description provided.

No description provided.

No description provided.

More…