None
FIT IN THE RANGE OF KINETIC ENERGY OF FRAGMENTS FROM 4 TO 8 MEV/NUCLEON.
FIT IN THE RANGE OF KINETIC ENERGY OF FRAGMENTS FROM 4 TO 8 MEV/NUCLEON.
Using the ARGUS detector at the DORIS II e+e− storage ring at DESY, we have obtained evidence for a new charmed resonance which decays into D*±(2010)π∓. The observed mass and width are 2420±6 MeV/c2 and 70±21 MeV/c2, respectively. The fragmentation function is found to be hard, as expected for a state containing a leading charm quark produced by nonresonant e+e− annihilation.
No description provided.
Estimated production cross section obtained by comparison with observed D*(2010) production rate.
An analysis of the production ofKS0KS0 andK±Ks0π∓ by two quasi-real photons is presented. The cross section forγγ→K0\(\overline {K^0 } \), which is given for the γγ invariant mass range fromK\(\bar K\) threshold to 2.5 GeV, is dominated by thef′(1525) resonance and an enhancement near theK\(\bar K\) threshold. Upper limits on the product of the two-photon width times the branching ratio intoK\(\bar K\) pairs are given forΘ(1700),h(2030), and ξ(2220). For exclusive two-photon production ofK±Ks0π∓ no significant signal was observed. Upper limits are given on the cross section ofγγ→K+\(\overline {K^0 } \)π− orK−K0π+ between 1.4 and 3.2 GeV and on the product of the γγ width times the branching ratio into theK\(\bar K\)π final states for theηc(2980) and the ι(1440), yieldingΓ(γγ)→i(1440))·BR(i(1440)→K\(\bar K\)π<2.2 keV at 95% C.L.
Data read from graph.. Corrected for the angular distribution, which is assumed to be sin(theta)**4 for W > 1.14 GeV and isotropic in the first bin.
Data read from graph.
The production of antideuterons has been observed in electron-positron annihilations at center-of-mass energies around 10 GeV. Antideuterons have been identified unambiguously by their energy loss in the drift chamber, their time-of-flight and the pattern of their energy deposition in the shower counters of the ARGUS detector. The production rate in the momentum range (0.6−1.8) GeV/ c is (1.6 −0.7 +1.0 ) × 10 −5 per hadronic event.
Results from 6 antideuterons detected (3 from UPSI(2S), 2 from (IS) and 1 from (4S)).
No description provided.
A search has been made for particles with charge Q = 1 3 , Q = 2 3 and Q = 4 3 produced in e + e − annihilation using the ARGUS detector at the e + e − storage ring DORIS, operating at a centre of mass energy around 10 GeV. No candidate events were found in 84.5 pb −1 of collected data. Upper limits are established for the cross section for the production of fractionally charged particles with masses up to 4 GeV c 2 , improving on previously obtained limits.
Two different models (I and II) are considered (see text).
We present measurements of kaon and antiproton production cross sections in the momentum region of 700 MeV/c from 0° to 10° by 28.4-GeV/c protons on complex nuclei. A model to describe the A dependence of these cross sections is discussed and compared with these and other data.
No description provided.
No description provided.
No description provided.
We have measured the cross sections for e + e − → e + e − , e + e − → μ + μ − , e + e − → γγ and e + e − → hadrons in an energy scan at center of mass energies between 39.79 and 46.72 GeV in 30 MeV steps. New spinless bosons, whose existence has been postulated as a possible means to explain the anomalously large radiative width of the Z 0 found at the CERN SPS p p collider, are ruled out in the scan region. The data are used to set limits on the couplings to lepton, photon and quark pairs of bosons with masses above 46.72 GeV.
SIG(C=SM) is the Standard Model predicted cross section.
Using the ARGUS detector at DORIS, we have observed the production of F ± mesons in e + e − annihilation at a centre of mass energy of 10 GeV through their subsequent decays into φπ ± and φπ + π − π ± . The values obtained for [ R (e + e − →FX). Branching Ratio] are (1.47 ± 0.32 ± 0.20)% and (1.63 ± 0.42 ± 0.41)% respectively. The observed mass is (1973.6 ± 2.6 ± 3.0) MeV c 2 . The F momentum spectrum is as expected for the fragmentation of c quarks into charmed mesons, but is somewhat softer than for fragmentation into D ∗ mesons. The relevant angular distributions are consistent with a spin-zero assignment of the F meson.
RESULTS OF FITS FOR SPECIFIED DECAY CHANNELS.
ACCEPTANCE CORRECTED FRAGMENTATION FUNCTION FOR THE TWO DECAY CHANNELS COMBINED. X IS PF/PMAX. DATA HAVE BEEN READ FROM THE GRAPH.
We have observed τ pair production at average CM energies of 13.9, 22.3, 34.5 and 43.1 GeV. The cross-sections are consistent with QED, the cut off parameters beingΛ+>161 GeV andΛ−169 GeV (95% CL). The topological branching fraction of the τ to 1 charged particle,B1, is 0.847±0.011 (stat)−0.013+0.016(syst) and no decays to 5 charged particles were observed resulting inB5<0.007 (95% CL). Within the 3 charged track final stateB(τ−→π−π+π−v)/(B(τ−→π−π+π−v)+B(τ−→π−π+π−π0v))=0.37−0.20+0.35
No description provided.
No description provided.
Results onK0 and Λ production ine+e− annihilation at c.m. energies of 14, 22 and 34 GeV are presented. The shape of theK0 and Λ differential cross sections are very similar to each other and to those of π±,K± and\(p(\bar p)\). Scaling violations are observed forK0 production. We obtain a value for the probability to produce strange quark-antiquark pairs relative to that to produce up or down quark-antiquark pairs of 0.35±0.02±0.05. The value ofRh=σ(e+e-→hX)/σµµ is shown to rise steadily with c.m. energy for all particle species. At 34 GeV we find 1.48±0.05K0 and 0.31±0.03 Λ per event. We have searched for possible Λ polarization. The production ofK0's and Λ's in jets is examined as a function ofpT2 and rapidity and compared to that of all charged particles; the yields in two and three jets are also investigated. Results are presented from events with two baryons\((\Lambda ,\bar \Lambda ,por\bar p)\) observed.
No description provided.
No description provided.
No description provided.