The energy dependence of the K−-nucleon total cross sections has been measured over the K− momentum range 0.98-3.98 Bev/c. K−−n cross sections were obtained by deuterium-hydrogen subtraction, with a correction for screening effects. There is evidence for structure in the T=0 K−-nucleon state in the momentum range 0.98-2.0 Bev/c. This structure is absent in the T=1 state. In addition, a measurement was made at 1.95 Bev/c of the angular distribution of the K−−p elastic scattering at small angles. The forward-scattering amplitude obtained from the data gives a ratio of real part to imaginary part 0.5±0.2 at 00. The corresponding ratio for π− mesons at this momentum was found to be 0.4−0.4+0.2. Measurements of the K−−p "elastic" charge exchange gives a cross section which falls from about 10 mb at 1 Bev/c to at most a few mb at 4 Bev/c.
No description provided.
A graphite-plate spark chamber has been used to analyze the polarization of protons recoiling from π−−p scattering. The observations were made at 90° (c.m. system) pion scattering angle for seven incident pion energies between 500 and 940 Mev, at 120° or 135° for five energies in this interval, and also at 75° for 500 Mev only. The results are compared with predictions of several models used to explain the maxima in the π−−p scattering cross section. Qualitative arguments show that the energy intervals between these maxima are not completely dominated by neighboring single-state resonances. Phase shifts found to be large in scattering also seem to be large in polarization.
No description provided.
No description provided.
No description provided.
We present the results of an analysis of data for the reaction π−p→KS0K−p at 20.3-GeV/c incident π momentum. We find that the K0K− effective-mass spectrum shows a single peak in the A2 region which is well fitted by a Breit-Wigner shape. The data in the A2-peak region are inconsistent with the split-A2 shape reported earlier. The distribution in t of the A2 events shows a forward dip followed by an exponential falloff. The A2 decay angular distribution is well fitted by a single resonance with quantum numbers JP=2+. The results of an analysis of the density-matrix elements for this reaction are given.
CORRECTED FOR UNSEEN K0 DECAYS AND FOR BREIT-WIGNER RESONANCE TAILS.
INCLUDING THE DENSITY MATRIX ELEMENTS OMITTED FROM THIS FIT GIVES NO SIGNIFICANT IMPROVEMENT AND THE NEW PARAMETERS ARE CLOSE TO ZERO. LIM INDICATES FITTED VALUE LIMITED FROM VARIATION BY PHYSICAL CONSTRAINTS FROM OTHER PARAMETERS.
We present differential and total cross sections for two reactions: π−p→K0Λ and π−p→K0Σ0. The incident pion momenta were 8, 10.7, and 15.7 GeVc. The results are based on an analysis of approximately 22 600 events of the two reactions where the π+ and π− from the decay of the KS0 were detected in the forward leg of the Double Vee Magnetic Spectrometer. The separation of Λ recoils from Σ0 recoils was accomplished by the missing-mass technique.
No description provided.
No description provided.
No description provided.
We present the differential cross sections near u=0 for the reactions π−p→K0Λ and π−p→K*0(890)Λ at incident pion momenta of 8 and 10.7 GeV/c. The differential cross section for the first reaction follows the exponential dependence on u previously observed, while the second shows a dip in the backward direction.
Axis error includes +- 25/25 contribution.
Axis error includes +- 25/25 contribution.
Axis error includes +- 25/25 contribution.
We present the results of an experiment to study the reaction π−p→A2−p, A2−→KS0K− at 22.4 and 23.9 GeV/c. We have 3346 KS0K− events in the effective mass region 1.1 to 1.5 GeV, and covering the |t′| interval 0.0 to 1.0 (GeV/c)2. Because of the low background in this channel, we are able to study various |t′| regions, including the region 0.2 to 0.29 (GeV/c)2 in which the original split A2 peak was observed. We find no substructure in any region. We have also derived differential and total cross sections. The differential cross sections are well fitted by the form dσdt′=At′ebt′ with b≈7.0 (GeV/c)−2. The total cross section is in good agreement with the value derived from other experiments that measure the A2−→ρ0π− decay mode.
No description provided.
No description provided.
No description provided.
We present differential and total cross sections for the reactions π−p→K0[Σ(1385)Λ(1405)] and π−p→K0Λ(1520) at incident pion momenta of 8.0, 10.7, and 15.7 GeV/c. Pions from the decay of the forward K0s's were detected in the forward leg of the BNL double-vee spectrometer and the recoil Y* 's were identified by the missing-mass technique.
Axis error includes +- 20/20 contribution.
Axis error includes +- 20/20 contribution.
Axis error includes +- 20/20 contribution.
Inclusive φ production is studied in π − p collisions at 16 GeV/ c . The φ cross section for Feynman variable x φ > 0.2 is found to be (15.5 ± 3.6) μb. This leads to an extrapolated cross section of (29.9 ± 7.0) μb for x φ > 0.0. Fitting the momentum transfer squared distribution of the φ to the form e −bp 2 T gives an average slope of b = (2.4 ± 0.3) (GeV/ c −2 for x φ > 0.5.
No description provided.
No description provided.
DATA OBTAINED FROM FIGURE BY A.A. LEBEDEV.
Inclusive K ∗0 production is studied in π − p interactions at 16 GeV/ c with x ϝ > 0.2. The K ∗0 is found to be pre-dominantly centrally produced with cross section σ( K ∗0 ) = (72 ± 12) μb for x ϝ > 0.2 and compares closely to data on K ∗0 production in π + p interactions at the same energy.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.