Results of a search for new physics in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton-proton collision data corresponding to an integrated luminosity of 139 fb$^{-1}$ at a center-of-mass energy of 13 TeV collected in the period 2015-2018 with the ATLAS detector at the Large Hadron Collider. Compared to previous publications, in addition to an increase of almost a factor of four in the data size, the analysis implements a number of improvements in the signal selection and the background determination leading to enhanced sensitivity. Events are required to have at least one jet with transverse momentum above 150 GeV and no reconstructed leptons ($e$, $\mu$ or $\tau$) or photons. Several signal regions are considered with increasing requirements on the missing transverse momentum starting at 200 GeV. Overall agreement is observed between the number of events in data and the Standard Model predictions. Model-independent $95%$ confidence-level limits on visible cross sections for new processes are obtained in the range between 736 fb and 0.3 fb. Results are also translated into improved exclusion limits in models with pair-produced weakly interacting dark-matter candidates, large extra spatial dimensions, supersymmetric particles in several compressed scenarios, axion-like particles, and new scalar particles in dark-energy-inspired models. In addition, the data are translated into bounds on the invisible branching ratio of the Higgs boson.
This is the HEPData space for the ATLAS monojet full Run 2 analysis. The full resolution figures can be found at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2018-06/ The full statistical likelihood is provided for this analysis. It can be downloaded by clicking on the purple 'Resources' button above and selecting the 'Common Resources' category. <br/><br/> <b>Post-fit $p_{\mathrm{T}}^{\mathrm{recoil}}$ distribution:</b> <ul> <li><a href="102093?version=3&table=HistogramCR1mu0b">CR1mu0b</a> <li><a href="102093?version=3&table=HistogramCR1e0b">CR1e0b</a> <li><a href="102093?version=3&table=HistogramCR1L1b">CR1L1b</a> <li><a href="102093?version=3&table=HistogramCR2mu">CR2mu</a> <li><a href="102093?version=3&table=HistogramCR2e">CR2e</a> <li><a href="102093?version=3&table=HistogramSR">SR</a> </ul> <b>Exclusion contours:</b> <ul> <li>Dark Matter axial-vector mediator: <ul> <li><a href="102093?version=3&table=ContourobsDMA">observed</a> <li><a href="102093?version=3&table=Contourobs_p1DMA">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourobs_m1DMA">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=ContourexpDMA">expected</a> <li><a href="102093?version=3&table=Contourexp_p1DMA">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m1DMA">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_p2DMA">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m2DMA">-2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourobs_xsecDMA">observed upper limits on the cross-sections</a> </ul> <li>Dark Matter pseudo-scalar mediator: <ul> <li><a href="102093?version=3&table=ContourobsDMP">observed</a> <li><a href="102093?version=3&table=Contourobs_p1DMP">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourobs_m1DMP">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=ContourexpDMP">expected</a> <li><a href="102093?version=3&table=Contourexp_p1DMP">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m1DMP">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_p2DMP">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m2DMP">-2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourobs_xsecDMP">observed upper limits on the cross-sections</a> </ul> <li>Dark Matter vector mediator: <ul> <li><a href="102093?version=3&table=ContourobsDMV">observed</a> <li><a href="102093?version=3&table=Contourobs_p1DMV">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourobs_m1DMV">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=ContourexpDMV">expected</a> <li><a href="102093?version=3&table=Contourexp_p1DMV">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m1DMV">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_p2DMV">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourexp_m2DMV">-2 $\sigma$ expected</a> </ul> <li>Dark Matter spin-dependent WIMP-nucleon scattering cross-section: <a href="102093?version=3&table=ContourSDneutron">observed</a> <li>Dark Matter spin-independent WIMP-nucleon scattering cross-section: <a href="102093?version=3&table=ContourSInucleon">observed</a> <li>Dark Matter WIMP annihilation rate: <a href="102093?version=3&table=ContourID">observed</a> <li>SUSY stop pair production: <ul> <li><a href="102093?version=3&table=Contourg_obsTT_directCC">observed</a> <li><a href="102093?version=3&table=Contourg_obs_p1TT_directCC">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_obs_m1TT_directCC">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_expTT_directCC">expected</a> <li><a href="102093?version=3&table=Contourg_exp_p1TT_directCC">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m1TT_directCC">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_p2TT_directCC">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m2TT_directCC">-2 $\sigma$ expected</a> </ul> <li>SUSY stop pair production (4-body decay): <ul> <li><a href="102093?version=3&table=Contourg_obsTT_bffN">observed</a> <li><a href="102093?version=3&table=Contourg_obs_p1TT_bffN">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_obs_m1TT_bffN">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_expTT_bffN">expected</a> <li><a href="102093?version=3&table=Contourg_exp_p1TT_bffN">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m1TT_bffN">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_p2TT_bffN">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m2TT_bffN">-2 $\sigma$ expected</a> </ul> <li>SUSY sbottom pair production: <ul> <li><a href="102093?version=3&table=Contourg_obsBB">observed</a> <li><a href="102093?version=3&table=Contourg_obs_p1BB">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_obs_m1BB">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_expBB">expected</a> <li><a href="102093?version=3&table=Contourg_exp_p1BB">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m1BB">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_p2BB">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m2BB">-2 $\sigma$ expected</a> </ul> <li>SUSY squark pair production: <ul> <li><a href="102093?version=3&table=Contourg_obsSS">observed</a> <li><a href="102093?version=3&table=Contourg_obs_p1SS">+1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_obs_m1SS">-1 $\sigma_{\mathrm{theory}}^{\mathrm{PDF+scale}}$ observed</a> <li><a href="102093?version=3&table=Contourg_expSS">expected</a> <li><a href="102093?version=3&table=Contourg_exp_p1SS">+1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m1SS">-1 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_p2SS">+2 $\sigma$ expected</a> <li><a href="102093?version=3&table=Contourg_exp_m2SS">-2 $\sigma$ expected</a> </ul> <li>Dark energy: <a href="102093?version=3&table=ContourDE">observed and expected</a> <li>ADD: <a href="102093?version=3&table=ContourADD">observed and expected</a> <li>Axion-like particles: <a href="102093?version=3&table=ContourALPs">observed and expected</a> </ul> <b>Impact of systematic uncertainties:</b> <a href="102093?version=3&table=Tablesystimpacts">Table</a><br/><br/> <b>Yields of exclusive regions:</b> <a href="102093?version=3&table=TableyieldsEM0">EM0</a> <a href="102093?version=3&table=TableyieldsEM1">EM1</a> <a href="102093?version=3&table=TableyieldsEM2">EM2</a> <a href="102093?version=3&table=TableyieldsEM3">EM3</a> <a href="102093?version=3&table=TableyieldsEM4">EM4</a> <a href="102093?version=3&table=TableyieldsEM5">EM5</a> <a href="102093?version=3&table=TableyieldsEM6">EM6</a> <a href="102093?version=3&table=TableyieldsEM7">EM7</a> <a href="102093?version=3&table=TableyieldsEM8">EM8</a> <a href="102093?version=3&table=TableyieldsEM9">EM9</a> <a href="102093?version=3&table=TableyieldsEM10">EM10</a> <a href="102093?version=3&table=TableyieldsEM11">EM11</a> <a href="102093?version=3&table=TableyieldsEM12">EM12</a><br/><br/> <b>Yields of inclusive regions:</b> <a href="102093?version=3&table=TableyieldsIM0">IM0</a> <a href="102093?version=3&table=TableyieldsIM1">IM1</a> <a href="102093?version=3&table=TableyieldsIM2">IM2</a> <a href="102093?version=3&table=TableyieldsIM3">IM3</a> <a href="102093?version=3&table=TableyieldsIM4">IM4</a> <a href="102093?version=3&table=TableyieldsIM5">IM5</a> <a href="102093?version=3&table=TableyieldsIM6">IM6</a> <a href="102093?version=3&table=TableyieldsIM7">IM7</a> <a href="102093?version=3&table=TableyieldsIM8">IM8</a> <a href="102093?version=3&table=TableyieldsIM9">IM9</a> <a href="102093?version=3&table=TableyieldsIM10">IM10</a> <a href="102093?version=3&table=TableyieldsIM11">IM11</a> <a href="102093?version=3&table=TableyieldsIM12">IM12</a><br/><br/> <b>Cutflows:</b><br/><br/> Signals filtered with a truth $E_\mathrm{T}^\mathrm{miss}$ cut at: <a href="102093?version=3&table=Tablecutflows150GeV">150 GeV</a> <a href="102093?version=3&table=Tablecutflows350GeV">350 GeV</a><br/><br/>
An experimental investigation of the reaction γ p → p p p at photon energies 4.7 ⩽ E γ ⩽ 6.6 GeV is described. The main results are the measurement of the cross section as a function of energy, a discussion of the main dynamical features of the reaction and the observation of a narrow p p mass state at 2.024 ± 0.005 GeV with a width of 29 ± 13 MeV.
A search for the Higgs boson decaying into a photon and a pair of electrons or muons with an invariant mass $m_{\ell\ell} < 30$ GeV is presented. The analysis is performed using 139 fb$^{-1}$ of proton-proton collision data, produced by the LHC at a centre-of-mass energy of 13 TeV and collected by the ATLAS experiment. Evidence for the $H \rightarrow \ell \ell \gamma$ process is found with a significance of 3.2$\sigma$ over the background-only hypothesis, compared to an expected significance of 2.1$\sigma$. The best-fit value of the signal strength parameter, defined as the ratio of the observed signal yield to the one expected in the Standard Model, is $\mu = 1.5 \pm 0.5$. The Higgs boson production cross-section times the $H \rightarrow\ell\ell\gamma$ branching ratio for $m_{\ell\ell} <$ 30 GeV is determined to be 8.7 $^{+2.8}_{-2.7}$ fb.
The fragmentation properties of jets containing $b$-hadrons are studied using charged $B$ mesons in 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV, recorded with the ATLAS detector at the LHC during the period from 2015 to 2018. The $B$ mesons are reconstructed using the decay of $B^{\pm}$ into $J/\psi K^{\pm}$, with the $J/\psi$ decaying into a pair of muons. Jets are reconstructed using the anti-$k_t$ algorithm with radius parameter $R=0.4$. The measurement determines the longitudinal and transverse momentum profiles of the reconstructed $B$ hadrons with respect to the axes of the jets to which they are geometrically associated. These distributions are measured in intervals of the jet transverse momentum, ranging from 50 GeV to above 100 GeV. The results are corrected for detector effects and compared with several Monte Carlo predictions using different parton shower and hadronisation models. The results for the longitudinal and transverse profiles provide useful inputs to improve the description of heavy-flavour fragmentation in jets.
This paper presents a search for massive charged long-lived particles produced in pp collisions at $\sqrt{s}=$ 13 TeV at the LHC using the ATLAS experiment. The dataset used corresponds to an integrated luminosity of 3.2 fb$^{-1}$. Many extensions of the Standard Model predict the existence of massive charged long-lived particles, such as $R$-hadrons. These massive particles are expected to be produced with a velocity significantly below the speed of light, and therefore to have a specific ionization higher than any Standard Model particle of unit charge at high momenta. The Pixel subsystem of the ATLAS detector is used to measure the ionization energy loss of reconstructed charged particles and to search for such highly ionizing particles. The search presented here has much greater sensitivity than a similar search performed using the ATLAS detector in the $\sqrt{s}=$ 8 TeV dataset, thanks to the increase in expected signal cross-section due to the higher center-of-mass energy of collisions, to an upgraded detector with a new silicon layer close to the interaction point, and to analysis improvements. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on $R$-hadron production cross-sections and masses are set. Gluino $R$-hadrons with lifetimes above 0.4 ns and decaying to $q\bar{q}$ plus a 100 GeV neutralino are excluded at the 95% confidence level, with lower mass limit ranging between 740 GeV and 1590 GeV. In the case of stable $R$-hadrons the lower mass limit at the 95% confidence level is 1570 GeV.
Making use of 36 pb^-1 of proton-proton collision data at sqrt{s} = 7 TeV, the ATLAS Collaboration has performed a search for diphoton events with large missing transverse energy. Observing no excess of events above the Standard Model prediction, a 95% Confidence Level (CL) upper limit is set on the cross section for new physics of sigma < 0.38 - 0.65 pb in the context of a generalised model of gauge mediated supersymmetry breaking (GGM) with a bino-like lightest neutralino, and of sigma < 0.18 - 0.23 pb in the context of a specific model with one universal extra dimension (UED). A 95 % CL lower limit of 560 GeV, for bino masses above 50 GeV, is set on the GGM gluino mass, while a lower limit of 1/R > 961 GeV is set on the UED compactification radius R. These limits provide the most stringent tests of these models to date.
A dedicated sample of Large Hadron Collider proton-proton collision data at centre-of-mass energy $\sqrt{s}=8$ TeV is used to study inclusive single diffractive dissociation, $pp \rightarrow Xp$. The intact final-state proton is reconstructed in the ATLAS ALFA forward spectrometer, while charged particles from the dissociated system $X$ are measured in the central detector components. The fiducial range of the measurement is $-4.0 < \log_{10} \xi < -1.6$ and $0.016 < |t| < 0.43 \ {\rm GeV^2}$, where $\xi$ is the proton fractional energy loss and $t$ is the squared four-momentum transfer. The total cross section integrated across the fiducial range is $1.59 \pm 0.13 \ {\rm mb}$. Cross sections are also measured differentially as functions of $\xi$, $t$, and $\Delta \eta$, a variable that characterises the rapidity gap separating the proton and the system $X$. The data are consistent with an exponential $t$ dependence, ${\rm d} \sigma / {\rm d} t \propto \text{e}^{Bt}$ with slope parameter $B = 7.65 \pm 0.34 \ {\rm GeV^{-2}}$. Interpreted in the framework of triple Regge phenomenology, the $\xi$ dependence leads to a pomeron intercept of $\alpha(0) = 1.07 \pm 0.09$.
A study of the charge conjugation and parity ($CP$) properties of the interaction between the Higgs boson and $\tau$-leptons is presented. The study is based on a measurement of $CP$-sensitive angular observables defined by the visible decay products of $\tau$-lepton decays, where at least one hadronic decay is required. The analysis uses 139 fb$^{-1}$ of proton$-$proton collision data recorded at a centre-of-mass energy of $\sqrt{s}= 13$ TeV with the ATLAS detector at the Large Hadron Collider. Contributions from $CP$-violating interactions between the Higgs boson and $\tau$-leptons are described by a single mixing angle parameter $\phi_{\tau}$ in the generalised Yukawa interaction. Without assuming the Standard Model hypothesis for the $H\rightarrow\tau\tau$ signal strength, the mixing angle $\phi_{\tau}$ is measured to be $9^{\circ} \pm 16^{\circ}$, with an expected value of $0^{\circ} \pm 28^{\circ}$ at the 68% confidence level. The pure $CP$-odd hypothesis is disfavoured at a level of 3.4 standard deviations. The results are compatible with the predictions for the Higgs boson in the Standard Model.
A search has been performed for photons originating in the decay of a neutral long-lived particle, exploiting the capabilities of the ATLAS electromagnetic calorimeter to make precise measurements of the flight direction of photons, as well as the calorimeter's excellent time resolution. The search has been made in the diphoton plus missing transverse energy final state, using the full data sample of 4.8/fb of 7 TeV proton-proton collisions collected in 2011 with the ATLAS detector at the LHC. No excess is observed above the background expected from Standard Model processes. The results are used to set exclusion limits in the context of Gauge Mediated Supersymmetry Breaking models, with the lightest neutralino being the next-to-lightest supersymmetric particle and decaying with a lifetime in excess of 0.25 ns into a photon and a gravitino.
The centrality dependence of the mean charged-particle multiplicity as a function of pseudorapidity is measured in approximately 1 $\mu$b$^{-1}$ of proton--lead collisions at a nucleon--nucleon centre-of-mass energy of $\sqrt{s_{_{\rm{NN}}}} = 5.02$ TeV using the ATLAS detector at the Large Hadron Collider. Charged particles with absolute pseudorapidity less than 2.7 are reconstructed using the ATLAS pixel detector. The $p$+Pb collision centrality is characterised by the total transverse energy measured in the Pb-going direction of the forward calorimeter. The charged-particle pseudorapidity distributions are found to vary strongly with centrality, with an increasing asymmetry between the proton-going and Pb-going directions as the collisions become more central. Three different estimations of the number of nucleons participating in the $p$+Pb collision have been carried out using the Glauber model as well as two Glauber--Gribov inspired extensions to the Glauber model. Charged-particle multiplicities per participant pair are found to vary differently for these three models, highlighting the importance of including colour fluctuations in nucleon--nucleon collisions in the modelling of the initial state of $p$+Pb collisions.