Differential Pion Charge-Exchange Scattering and $\eta$ Production: $\pi^-+p\to \pi^0 + n$ from 2.4 to 3.8 GeV/c, at 6 GeV/c and at 10 GeV/c, $\pi^-+p\to \eta^0 + n$ at 10 GeV/c

Wahlig, M.A. ; Mannelli, I. ;
Phys.Rev. 168 (1968) 1515-1526, 1968.
Inspire Record 1186784 DOI 10.17182/hepdata.749

Small-angle differential cross sections are presented here for π−+p→π0+n charge-exchange scattering between 2.4 and 3.8 GeV/c. The differential cross section near t=0 displays two minima and one maximum in this momentum interval, reflecting the presence of the N32*(2420), N32*(2850), and N12*(2650) resonances; at larger t values, the cross sections fall off exponentially as a function of t, just as has been previously observed for charge-exchange scattering above 6 GeV/c. The pion-charge-exchange data reported here at 6 and 10 GeV/c extend out to large angles, showing a maximum near t=0, followed by an exponential falloff as e10t, a minimum near −t=0.6 (GeV/c)2, and then a second maximum near −t=1.0 (GeV/c)2. The π−+p→η0+n differential cross section shows a maximum near t=0, followed by an exponential falloff as e4t, much less steep than the π0 slope. These data are compared to our previously published data and to those of the Saclay-Orsay group.

15 data tables

No description provided.

No description provided.

No description provided.

More…

Momentum dependence of the 180-degrees pi- p charge-exchange cross-section

Kistiakowsky, V. ; Feld, B.T. ; Triantis, F.A. ; et al.
Phys.Rev.D 6 (1972) 1882-1905, 1972.
Inspire Record 83145 DOI 10.17182/hepdata.3611

The π−+p→π0+n differential cross section at 180° has been measured for 52 values of π− momentum from 1.8 to 6.0 GeV/c using a constant-geometry detection system. The average statistical uncertainty is ∼5% and the systematic uncertainty is ∼10%. The details of the experiment and the data analysis are discussed. The data are compared with those of other experiments with which they are generally in agreement. One set of data disagrees with those presented here and a possible reason for this is discussed. A five-parameter fit of the predictions of a dual-resonance model to our data gave excellent agreement. The differential cross sections at 180° for π±p elastic scattering have been compiled and the moduli and relative phase of the T=12 and T=32 pion-nucleon s- and u-channel amplitudes (|A12|, |A32|, and cosδ) have a minimum at u=0.4 GeV/c and, in the s channel, a corresponding minimum at s=2.2 GeV/c.

53 data tables

No description provided.

No description provided.

No description provided.

More…

MEASUREMENT OF POLARIZATION PARAMETERS FOR THE PI- P ---> PI0 N CHARGE EXCHANGE SCATTERING FROM 1965-MEV/C TO 4220-MEV/C

Minowa, M. ; Adachi, T. ; Daigo, M. ; et al.
Nucl.Phys.B 294 (1987) 979-1000, 1987.
Inspire Record 255228 DOI 10.17182/hepdata.33402

Polarization parameters for the π − p → π 0 n charge exchange scattering have been measured at eight beam momenta between 1965 and 4220 MeV/ c using two different experimental set-ups. The angular range covered is −0.90 < cos θ π ∗ < 0.95 at the five momenta of 1965, 2168, 2360, 2566 and 2960 MeV/ c , where θ π ∗ is the emission angle of the π 0 meson in the c.m.s.. For three momenta of 2770, 3490 and 4220 MeV/ c , the measurements cover the forward angles of 0.1 < cos θ π ∗ < 1.0 . The results are compared with the predictions of π N partial wave analyses.

4 data tables

Polarisation measurements from SETUP1. Errors are statistical only.

Polarisation measurements from SETUP2. Errors are statistical only.

Legendre polynomial coefficients for fit to differential cross section data.

More…

Longitudinal and transverse cross sections in the H-1(e,e' K+)Lambda reaction.

Niculescu, G. ; Mohring, R.M. ; Gueye, P. ; et al.
Phys.Rev.Lett. 81 (1998) 1805-1808, 1998.
Inspire Record 479881 DOI 10.17182/hepdata.19546

The 1H(e,e′K+)Λ reaction was studied as a function of the squared four-momentum transfer, Q2, and the virtual photon polarization, ɛ. For each of four Q2 settings, 0.52, 0.75, 1.00, and 2.00 (GeV/c)2, the longitudinal and transverse virtual photon cross sections were extracted in measurements at three virtual photon polarizations. The Q2 dependence of the σL/σT ratio differs significantly from current theoretical predictions. This, combined with the precision of the measurement, implies a need for revision of existing calculations.

1 data table

The systematic and statistical errors are added in quadrature. OMEGA is the solid angle of K+ in CMS.


Exclusive eta production in proton-proton reactions.

Balestra, F. ; Bedfer, Y. ; Bertini, R. ; et al.
Phys.Rev.C 69 (2004) 064003, 2004.
Inspire Record 653991 DOI 10.17182/hepdata.25225

Differential cross sections for the exclusive reaction p⃗p→ppη observed via the η→π+π−π0 decay channel have been measured at Tbeam=2.15GeV, 2.50GeV, and 2.85GeV (excess energies 324MeV, 412MeV, and 554MeV). The influence of the N(1535)S11 resonance is clearly seen in the invariant mass and momentum dependent differential cross sections. The extracted resonance parameters are compatible with existing data. No significant evidence for further resonance contributions has been found. In addition, angular distributions of the ppη final state have been measured. The polar angle distribution of the η shows an anisotropy with respect to the beam axis for the lowest beam energy, which vanishes for the higher energies. The sign of this anisotropy is negative and expected to be sensitive to the dominant production mechanism. In contrast, the proton polar angle in the pp rest frame tends to be more strongly aligned along the beam axis with increasing beam energy. The analyzing power Ay is compatible with zero for all beam energies.

8 data tables

Differential cross section for incident kinetic energy 2.15 GeV, divided by the phase space as a function of the invariant mass of the ETA and the final state proton with the lower value of ABS(T). This is proportional to the square of the decay matrix element ABS(M)**2 of the P-ETA system.

Differential cross section for incident kinetic energy 2.50 GeV, divided by the phase space as a function of the invariant mass of the ETA and the final state proton with the lower value of ABS(T). This is proportional to the square of the decay matrix element ABS(M)**2 of the P-ETA system.

Differential cross section for incident kinetic energy 2.85 GeV, divided by the phase space as a function of the invariant mass of the ETA and the final state proton with the lower value of ABS(T). This is proportional to the square of the decay matrix element ABS(M)**2 of the P-ETA system.

More…