Date

Intermittency in hadronic decays of the Z0

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 262 (1991) 351-361, 1991.
Inspire Record 314631 DOI 10.17182/hepdata.29397

A factorial moment analysis has been performed on the differential multiplicity distributions of hadronic final states of the Z 0 recorded with the OPAL detector at LEP. The moments of the one-dimensional rapidity and the two-dimensional rapidity versus azimuthal angle distributions are found to exhibit “intermittent” behaviour attributable to the jet structure of the events. The moments are reproduced by both parton shower and matrix element QCD based hadronisation models. No evidence for fluctuations beyond those attributable to jet structure is observed.

3 data tables

Corrected factorial moments of the rapidity distribution with respect to the sphericity axis. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.

Corrected factorial moments of the rapidity distribution with respect to the electron beam axis. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.

Corrected factorial moments of the rapidity (with respect to the sphericityaxis) versus PHI distribution. For each point the NUMBER of bins are constructe d from equal numbers of YRAP and PHI bins. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.


Measurement of QCD jet broadening in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.D 44 (1991) 601-616, 1991.
Inspire Record 314647 DOI 10.17182/hepdata.22832

A measurement of the QCD jet-broadening parameter 〈QT〉 is described for high-ET jet data in the central calorimeter of the Collider Detector at Fermilab. As an alternate approach to clustering analysis, this method involves the use of a global event parameter which is free from the ambiguities associated with the definition and separation of individual clusters. The parameter QT is defined as the scalar sum of the transverse momentum perpendicular to the transverse thrust axis. Parton-level QCD predictions are made for 〈QT〉 as a function of ET, the total transverse energy in the events, and suggest that a measurement would show a dependence on the running of the strong coupling constant αs. Comparisons are made to first-order QCD parton-level calculations, as well as to fully evolved and hadronized leading-log simulations. The data are well described by the QCD predictions.

1 data table

A small asymmetry in the systematic uncertainty has been ignored. Given here are the average values.


Comparison of p + A and Si + Au collisions at 14.6-GeV/c

The E802 collaboration Abbott, T. ; Akiba, Y. ; Beavis, D. ; et al.
Phys.Rev.Lett. 66 (1991) 1567-1570, 1991.
Inspire Record 331219 DOI 10.17182/hepdata.19913

The production of π±,K±,p has been measured in p+Be and p+Au collisions for comparison with central Si+Au collisions. The inverse slope parameters T0 obtained by an exponential fit to the invariant cross sections in transverse mass are found to be, T0p,K+,ππ∼140–160 MeV in p+A collisions, whereas in central Si+Au collisions, T0p,K+∼200–220 MeV >T0ππ∼140–160 MeV at midrapidity. The π± and K+ distributions are shifted backwards in p+Au compared with p+Be. A gradual increase of (dn/dy)K+ per projectile nucleon is observed from p+Be to p+Au to central Si+Au collisions, while pions show no significant increase.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Charged particle multiplicity distributions in restricted rapidity intervals in Z0 hadronic decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 52 (1991) 271-281, 1991.
Inspire Record 324035 DOI 10.17182/hepdata.14860

The multiplicity distributions of charged particles in restricted rapidity intervals inZ0 hadronic decays measured by the DELPHI detector are presented. The data reveal a shoulder structure, best visible for intervals of intermediate size, i.e. for rapidity limits around ±1.5. The whole set of distributions including the shoulder structure is reproduced by the Lund Parton Shower model. The structure is found to be due to important contributions from 3-and 4-jet events with a hard gluon jet. A different model, based on the concept of independently produced groups of particles, “clans”, fluctuating both in number per event and particle content per clan, has also been used to analyse the present data. The results show that for each interval of rapidity the average number of clans per event is approximately the same as at lower energies.

15 data tables

Data for both hemispheres.

Data for both hemispheres.

Data for both hemispheres.

More…

Charged particle multiplicities in nuclear collisions at 200-GeV/N

The NA35 collaboration Bächler, J. ; Bartke, J. ; Bialkowska, H. ; et al.
Z.Phys.C 51 (1991) 157-162, 1991.
Inspire Record 320907 DOI 10.17182/hepdata.14983

Data on multiplicities of charged particles produced in proton-nucleus and nucleus-nucleus collisions at 200 GeV per nucleon are presented. It is shown that the mean multiplicity of negative particles is proportional to the mean number of nucleons participating in the collision both for nucleus-nucleus and proton-nucleus collisions. The apparent consistency of pion multiplicity data with the assumption of an incoherent superposition of nucleon-nucleon collisions is critically discussed.

4 data tables

No description provided.

No description provided.

No description provided.

More…

The search for narrow resonances in the reaction e+ e- ---> hadrons at center-of-mass energy range between 7.23-GeV and 10.34-GeV

Blinov, A.E. ; Blinov, V.E. ; Beilin, M.V. ; et al.
Z.Phys.C 49 (1991) 239-243, 1991.
Inspire Record 316888 DOI 10.17182/hepdata.15083

The results of a search for narrow resonances ine+e− annihilation at centre-of-mass energies between 7.23 and 10.34 GeV are presented. The experiment was performed using the MD-1 detector at the VEPP-4 storage ring. The total luminosity integral of 16 pb−1 was taken. There is no evidence that new states exist. The upper limits on the leptonic widthΓee of possible resonances are less, by a factor of 10–80, than theΓee for the ϒ(1S) meson.

1 data table

Average R value (excluding upsilon region).


Inclusive inelastic scattering of 96.5-MeV pi+ and pi- by the hydrogen and helium isotopes

Khandaker, M.A. ; Doss, M. ; Halpern, I. ; et al.
Phys.Rev.C 44 (1991) 24-36, 1991.
Inspire Record 323112 DOI 10.17182/hepdata.26156

Spectra, angular distributions, and integrated cross sections for inclusive inelastic scattering of 96.5-MeV π+ and π− from H2, He3, and He4 are presented. The measurements were made using a high-pressure gas cell, which permits an accurate determination of relative cross sections for all targets. The data are compared with distorted-wave impulse-approximation calculations and with a modified plane-wave impulse-approximation calculation. In addition, by combining the total inelastic cross sections from this work with estimates of single-charge-exchange cross sections and with published values and reasonable estimates of the other π+ cross sections at the same energy, values for total reaction and pion absorption cross sections are obtained for all the targets. The dependence of these cross sections on Z, N, nuclear density, and nuclear binding energy is discussed in terms of a simple model.

2 data tables

No description provided.

No description provided.


Strangeness enhancement in central S + S collisions at 200-GeV/nucleon.

The NA35 collaboration Baechler, J. ; Bartke, J. ; Bialkowska, H. ; et al.
Nucl.Phys.A 525 (1991) 221C-226C, 1991.
Inspire Record 328899 DOI 10.17182/hepdata.36820

None

4 data tables

No description provided.

No description provided.

No description provided.

More…

Negative pion production in subthreshold heavy ion collisions

Suzuki, T. ; Fukuda, M. ; Ichihara, T. ; et al.
Phys.Lett.B 257 (1991) 27-31, 1991.
Inspire Record 324305 DOI 10.17182/hepdata.29463

Inclusive π − spectra have been measured for 14 N+C collisions at 41 A , 67 A , 80 A and 135 A MeV, the lowest energies measured for the charged pion. The cross sections fall exponentially with T π and the exponential slope factors at 90° in the nucleon-nucleon center of mass frame are determined. Energy distributions below a beam energy of 100 A MeV are less steep than expected from the monotonic decrease of the slope factor down to 100 A MeV. The production mechanism of energetic pions far below threshold is discussed for several models.

2 data tables

No description provided.

No description provided.


Determination of alpha-s from energy-energy correlations measured on the Z0 resonance.

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 257 (1991) 469-478, 1991.
Inspire Record 324427 DOI 10.17182/hepdata.29467

We present a study of energy-energy correlations based on 83 000 hadronic Z 0 decays. From this data we determine the strong coupling constant α s to second order QCD: α s (91.2 GeV)=0.121±0.004(exp.)±0.002(hadr.) −0.006 +0.009 (scale)±0.006(theor.) from the energy-energy correlation and α s (91.2 GeV)=0.115±0.004(exp.) −0.004 +0.007 (hadr.) −0.000 +0.002 (scale) −0.005 +0.003 (theor.) from its asymmetry using a renormalization scale μ 1 =0.1 s . The first error (exp.) is the systematic experimental uncertainly, the statistical error is negligible. The other errors are due to hadronization (hadr.), renormalization scale (scale) uncertainties, and differences between the calculated second order corrections (theor.).

3 data tables

Statistical errors are equal to or less than 0.6 pct in each bin. There is also a 4 pct systematic uncertainty.

ALPHA_S from the EEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.

ALPHA_S from the AEEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.