Showing 3 of 3 results
An inclusive search for nonresonant signatures of beyond the standard model (SM) phenomena in events with three or more charged leptons, including hadronically decaying $\tau$ leptons, is presented. The analysis is based on a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, collected by the CMS experiment at the LHC in 2016-2018. Events are categorized based on the lepton and b-tagged jet multiplicities and various kinematic variables. Three scenarios of physics beyond the SM are probed, and signal-specific boosted decision trees are used for enhancing sensitivity. No significant deviations from the background expectations are observed. Lower limits are set at 95% confidence level on the mass of type-III seesaw heavy fermions in the range 845-1065 GeV for various decay branching fraction combinations to SM leptons. Doublet and singlet vector-like $\tau$ lepton extensions of the SM are excluded for masses below 1045 GeV and in the mass range 125-150 GeV, respectively. Scalar leptoquarks decaying exclusively to a top quark and a lepton are excluded below 1.12-1.42 TeV, depending on the lepton flavor. For the type-III seesaw as well as the vector-like doublet model, these constraints are the most stringent to date. For the vector-like singlet model, these are the first constraints from the LHC experiments. Detailed results are also presented to facilitate alternative theoretical interpretations.
The minimum lepton $\mathrm{p_{T}}$ (GeV) distribution in 3L MisID CR events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
The $\mathrm{S_{T}}$ (GeV) distribution in 3L WZ CR events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
The $\mathrm{DR_{min}}$ distribution in 3L Z$\mathrm{\gamma}$ CR events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
The distribution of $\mathrm{p_{T}^{miss}}$ (GeV) in 2L1T MisID CR events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
The distribution of $\mathrm{M_{T}}$ (GeV) in 3L OnZ CR events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
The distribution of $\mathrm{H_{T}}$ (GeV) in 3L ttZ CR events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
Distribution of BDT score from the SS-M ($\mathrm{B_{e}=B_{\mu}=B_{\tau}}$) BDT for the 3L+2L1T CR events for the combined 2016-2018 data set. The 3L+2L1T CR consists of the 3L OnZ, 3L Z$\mathrm{\gamma}$, and 2L1T MisID CRs. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
The distribution of visible diboson $\mathrm{p_{T}}$ (GeV) in 4L ZZ CR events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
Distribution of BDT score from the SS-M ($\mathrm{B_{e}=B_{\mu}=B_{\tau}}$) BDT for the 4L ZZ CR events for the combined 2016-2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
The distribution of $\mathrm{L_{T}}$ in all seven multilepton channels for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton of $\mathrm{m_{\tau'}}$ = 1 TeV in the doublet scenario, before the fit, is also overlaid.
The distribution of $\mathrm{p_{T}^{miss}}$ in all seven multilepton channels for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermion of $\mathrm{m_{\Sigma}}$ = 1 TeV in the flavor-democratic scenario, before the fit, is also overlaid.
The distribution of $\mathrm{H_{T}}$ in all seven multilepton channels for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. For illustration, an example signal hypothesis for the production of the scalar leptoquark of $mathrm{m_{S}}$ = 1 TeV coupled to a top quark and a $\tau$ lepton, before the fit, is also overlaid.
The distribution of $\mathrm{M_{OSSF}}$ in channels with at least one light lepton pair (4L, 3L1T, 3L, 2L2T, and 2L1T) for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermion of $\mathrm{m_{\Sigma}}$ = 1 TeV in the flavor-democratic scenario, before the fit, is also overlaid.
The $\mathrm{N_{b}}$ distribution in 4L, 3L1T, 3L, 2L2T, 2L1T, 1L3T, and 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
The invariant mass distribution of the opposite-sign same-flavor ($\mathrm{M_{OSSF}}$) tau lepton pair distribution in 2L2T, 1L3T, and 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
The $\mathrm{M_{T}^{12}}$ distribution in 4L, 3L1T, 3L, 2L2T, 2L1T, 1L3T, and 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction.
The $\mathrm{N_{b}}$ distribution in 3L, 2L1T, and 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The $\mathrm{L_{T}}$ distribution in 3L, 2L1T, and 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The $\mathrm{p_{T}^{miss}}$ distribution in 3L, 2L1T, and 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The $\mathrm{H_{T}}$ distribution in 3L, 2L1T, and 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The $\mathrm{M_{OSSF}}$ distribution in 3L, and 2L1T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The invariant mass distribution of the opposite-sign different-flavor ($\mathrm{M_{OSDF}}$) light lepton pair distribution in 3L, and 2L1T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The invariant mass distribution of the opposite-sign same-flavor ($\mathrm{M_{OSSF}}$) tau lepton pair distribution in 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The invariant mass distribution of the opposite-sign different-flavor ($\mathrm{M_{OSDF}}$) light lepton and tau lepton pair distribution in 2L1T, and 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The $\mathrm{M_{T}^{1}}$ distribution in 3L, 2L1T, and 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The $\mathrm{M_{T}^{12}}$ distribution in 3L, 2L1T, and 1L2T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The model independent fundamental table categories for the combined 2016-2018 data set, as defined in Table 1. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The $\mathrm{N_{b}}$ distribution in 4L, 3L1T, 2L2T, and 1L3T events for the combined 2016-2018 data set. The rightmost bin contains the overflow events. The gray band represents the sum of statistical and systematic uncertainties on the SM background predictions.
The SR distributions of the fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table in 3L channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table in 2L1T and 1L2T channels for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table in 3L channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table in 2L1T and 1L2T channels for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table in 4L, 3L1T, 2L2T, and 1L3T channels for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table in 4L, 3L1T, 2L2T, and 1L3T channels for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{S_{T}}$ table in 3L channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{S_{T}}$ table in 2L1T and 1L2T channels for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{S_{T}}$ table in 3L channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{S_{T}}$ table in 2L1T and 1L2T channels for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{S_{T}}$ table in 4L, 3L1T, 2L2T, and 1L3T channels for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the fundamental $\mathrm{S_{T}}$ table in 4L, 3L1T, 2L2T, and 1L3T channels for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 3L 0B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 3L 1B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 3L 2B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 2L1T 0B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 2L1T 1B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 2L1T 2B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 1L2T channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. An example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid. For this category, the signal yield is negligible and is not visible in the figure.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 3L 0B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 3L 1B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 3L 2B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 2L1T 0B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 2L1T 1B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 2L1T 2B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 1L2T channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. An example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid. For this category, the signal yield is negligible and is not visible in the figure.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 4L 0B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 4L 1B/2B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 3L1T, 2L2T, and 1L3T channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 4L 0B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 4L 1B/2B channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The SR distributions of the advanced $\mathrm{S_{T}}$ table in 3L1T, 2L2T, and 1L3T channel for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The VLL-L BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 200 GeV, before the fit, is also overlaid.
The VLL-L BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 200 GeV, before the fit, is also overlaid.
The VLL-L BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 200 GeV, before the fit, is also overlaid.
The VLL-M BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 400 GeV, before the fit, is also overlaid.
The VLL-M BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 400 GeV, before the fit, is also overlaid.
The VLL-M BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 400 GeV, before the fit, is also overlaid.
The VLL-H BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 900 GeV, before the fit, is also overlaid.
The VLL-H BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 900 GeV, before the fit, is also overlaid.
The VLL-H BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 900 GeV, before the fit, is also overlaid.
The VLL-L BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 200 GeV, before the fit, is also overlaid.
The VLL-L BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 200 GeV, before the fit, is also overlaid.
The VLL-L BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 200 GeV, before the fit, is also overlaid.
The VLL-M BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 400 GeV, before the fit, is also overlaid.
The VLL-M BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 400 GeV, before the fit, is also overlaid.
The VLL-M BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 400 GeV, before the fit, is also overlaid.
The VLL-H BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 900 GeV, before the fit, is also overlaid.
The VLL-H BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 900 GeV, before the fit, is also overlaid.
The VLL-H BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 900 GeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 850 GeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 850 GeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 850 GeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 100 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-L $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 300 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-M $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 550 GeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 850 GeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 850 GeV, before the fit, is also overlaid.
The SS-H $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the scenario with mixing exclusively to $\tau$ lepton for $\mathrm{m_{\Sigma}}$ = 850 GeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 1.2 TeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 1.2 TeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{\tau}=1}$ BDT regions for the 3-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 1.2 TeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 1.2 TeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 1.2 TeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{e}+B_{\mu}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and an electron for $\mathrm{m_{S}}$ = 1.2 TeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-VL $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 200 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-L $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 400 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-M $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 700 GeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2016 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 1.2 TeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2017 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 1.2 TeV, before the fit, is also overlaid.
The LQ-H $\mathrm{B_{\tau}=1}$ BDT regions for the 4-lepton channels for the 2018 data set. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background prediction. The expected SM background distributions and the uncertainties are shown after fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a $\tau lepton$ for $\mathrm{m_{S}}$ = 1.2 TeV, before the fit, is also overlaid.
Observed and expected upper limits at 95%% CL on the production cross section for the type-III seesaw fermions in the flavor-democratic scenario using the table schemes and the BDT regions of the SS-M and the SS-H $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ BDTs. To the left of the vertical dashed gray line, the limits are shown from the advanced $\mathrm{S_{T}}$ table, and to the right the limits are shown from the BDT regions.
Observed and expected upper limits at 95%% CL on the production cross section for the vector-like $\mathrm{\tau}$ leptons: doublet model. To the left of the vertical dashed gray line, the limits are shown from the advanced $\mathrm{S_{T}}$ table, and to the right the limits are shown from the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks: $\mathrm{B_{\tau}=1}$ and $\mathrm{\beta=1}$. To the left of the vertical dashed gray line, the limits are shown from the advanced $\mathrm{S_{T}}$ table, and to the right the limits are shown from the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks: $\mathrm{B_{e}=1}$ and $\mathrm{\beta=1}$. To the left of the vertical dashed gray line, the limits are shown from the advanced $\mathrm{S_{T}}$ table, and to the right the limits are shown from the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks: $\mathrm{B_{\mu}=1}$ and $\mathrm{\beta=1}$. To the left of the vertical dashed gray line, the limits are shown from the advanced $\mathrm{S_{T}}$ table, and to the right the limits are shown from the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the vector-like $\mathrm{\tau}$ leptons: singlet model. The limit is shown from the advanced $\mathrm{S_{T}}$ table for all masses.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ scenario using the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ scenario using the Fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ scenario using the Fundamental $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{e}=B_{\mu}=B_{\tau}}$ scenario using the Advanced $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{\mu}=1}$ scenario using the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{\mu}=1}$ scenario using the Fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{\mu}=1}$ scenario using the Fundamental $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{\mu}=1}$ scenario using the Advanced $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{e}=1}$ scenario using the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{e}=1}$ scenario using the Fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{e}=1}$ scenario using the Fundamental $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{e}=1}$ scenario using the Advanced $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{\tau}=1}$ scenario using the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{\tau}=1}$ scenario using the Fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{\tau}=1}$ scenario using the Fundamental $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the type-III seesaw fermions in the $\mathrm{B_{\tau}=1}$ scenario using the Advanced $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{\mu}=1}$ scenario using the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{\mu}=1}$ scenario using the Fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{\mu}=1}$ scenario using the Fundamental $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{\mu}=1}$ scenario using the Advanced $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{e}=1}$ scenario using the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{e}=1}$ scenario using the Fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{e}=1}$ scenario using the Fundamental $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{e}=1}$ scenario using the Advanced $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{\tau}=1}$ scenario using the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{\tau}=1}$ scenario using the Fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{\tau}=1}$ scenario using the Fundamental $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{\tau}=1}$ scenario using the Advanced $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the vector-like $\tau$ leptons in the doublet scenario using the BDT regions.
Observed and expected upper limits at 95% CL on the production cross section for the vector-like $\tau$ leptons in the doublet scenario using the Fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the vector-like $\tau$ leptons in the doublet scenario using the Fundamental $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the vector-like $\tau$ leptons in the doublet scenario using the Advanced $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the vector-like $\tau$ leptons in the singlet scenario using the Fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the vector-like $\tau$ leptons in the singlet scenario using the Fundamental $\mathrm{S_{T}}$ table.
Observed and expected upper limits at 95% CL on the production cross section for the vector-like $\tau$ leptons in the singlet scenario using the Advanced $\mathrm{S_{T}}$ table.
Observed lower limits at 95% CL on the mass of the type-III seesaw fermions in the plane defined by $\mathrm{B_{e}}$ and $\mathrm{B_{\tau}}$, with the constraint that $\mathrm{B_{e}+B_{\mu}+B_{\tau}=1}$. These limits arise from the SS-H $\mathrm{B_{\tau}=1}$ BDT when $\mathrm{B_{\tau}\geq0.9}$, and by the SS-H $\mathrm{B_{e}+B_{\mu}+B_{\tau}=1}$ BDT for the other decay branching fraction combinations.
Median Expected lower limits at 95% CL on the mass of the type-III seesaw fermions in the plane defined by $\mathrm{B_{e}}$ and $\mathrm{B_{\tau}}$, with the constraint that $\mathrm{B_{e}+B_{\mu}+B_{\tau}=1}$. These limits arise from the SS-H $\mathrm{B_{\tau}=1}$ BDT when $\mathrm{B_{\tau}\geq0.9}$, and by the SS-H $\mathrm{B_{e}+B_{\mu}+B_{\tau}=1}$ BDT for the other decay branching fraction combinations.
Acceptance times efficiency values for the major SM backgrounds WZ, ZZ, and ttZ in the signal regions of all seven multilepton channels. The product is defined as the ratio of the total reconstructed yield in a given channel (after all the corrections and scale factor implementation) to the product of luminosity and the production cross section of the given simulation sample. The statistical uncertainty on the acceptance times efficiency values is insignificant with respect to the quoted precision.
Acceptance times efficiency values with statistical uncertainty for the vector-like $\mathrm{\tau}$ lepton model in the doublet scenario in the signal regions of all seven multilepton channels. The product is defined as the ratio of the total reconstructed yield in a given channel (after all the corrections and scale factor implementation) to the product of luminosity and the production cross section of the given simulation sample.
Acceptance times efficiency values with statistical uncertainty for the vector-like $\mathrm{\tau}$ lepton model in the singlet scenario in the signal regions of all seven multilepton channels. The product is defined as the ratio of the total reconstructed yield in a given channel (after all the corrections and scale factor implementation) to the product of luminosity and the production cross section of the given simulation sample.
Acceptance times efficiency values with statistical uncertainty for the type-III seesaw fermions in the $\mathrm{(B_{e}=B_{\mu}=B_{\tau})}$ scenario in the signal regions of all seven multilepton channels. The product is defined as the ratio of the total reconstructed yield in a given channel (after all the corrections and scale factor implementation) to the product of luminosity and the production cross section of the given simulation sample.
Acceptance times efficiency values with statistical uncertainty for the type-III seesaw fermions in the $\mathrm{(B_{e}=1)}$ scenario in the signal regions of all seven multilepton channels. The product is defined as the ratio of the total reconstructed yield in a given channel (after all the corrections and scale factor implementation) to the product of luminosity and the production cross section of the given simulation sample.
Acceptance times efficiency values with statistical uncertainty for the type-III seesaw fermions in the $\mathrm{(B_{\mu}=1)}$ scenario in the signal regions of all seven multilepton channels. The product is defined as the ratio of the total reconstructed yield in a given channel (after all the corrections and scale factor implementation) to the product of luminosity and the production cross section of the given simulation sample.
Acceptance times efficiency values with statistical uncertainty for the type-III seesaw fermions in the $\mathrm{B_{\tau}=1)}$ scenario in the signal regions of all seven multilepton channels. The product is defined as the ratio of the total reconstructed yield in a given channel (after all the corrections and scale factor implementation) to the product of luminosity and the production cross section of the given simulation sample.
Acceptance times efficiency values with statistical uncertainty for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{\tau}=1}$ scenario in the signal regions of all seven multilepton channels. The product is defined as the ratio of the total reconstructed yield in a given channel (after all the corrections and scale factor implementation) to the product of luminosity and the production cross section of the given simulation sample.
Acceptance times efficiency values with statistical uncertainty for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{e}=1}$ scenario in the signal regions of all seven multilepton channels. The product is defined as the ratio of the total reconstructed yield in a given channel (after all the corrections and scale factor implementation) to the product of luminosity and the production cross section of the given simulation sample.
Acceptance times efficiency values with statistical uncertainty for the scalar leptoquarks with $\mathrm{\beta=1}$ in the $\mathrm{B_{\mu}=1}$ scenario in the signal regions of all seven multilepton channels. The product is defined as the ratio of the total reconstructed yield in a given channel (after all the corrections and scale factor implementation) to the product of luminosity and the production cross section of the given simulation sample.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of SM gauge bosons (W/Z/h) for 0.2<dRmin<0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of SM gauge bosons (W/Z/h) for dRmin>0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for 0.2<dRmin<0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for dRmin>0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for 0.2<dRmin<0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for dRmin>0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of $\tau$ leptons for 0.2<dRmin<0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of $\tau$ leptons for dRmin>0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of $\tau$ leptons for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of $\tau$ leptons for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of $\tau$ leptons for 0.2<dRmin<0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of $\tau$ leptons for dRmin>0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of $\tau$ leptons for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of $\tau$ leptons for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of $\tau$ leptons for 0.2<dRmin<0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of $\tau$ leptons for dRmin>0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of $\tau$ leptons for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for electrons in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of $\tau$ leptons for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|<1.2}$ region, arising from the decay of SM gauge bosons (W/Z/h) for 0.2<dRmin<0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|<1.2}$ region, arising from the decay of SM gauge bosons (W/Z/h) for dRmin>0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|<1.2}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|<1.2}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|>1.2}$ region, arising from the decay of SM gauge bosons (W/Z/h) for 0.2<dRmin<0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|>1.2}$ region, arising from the decay of SM gauge bosons (W/Z/h) for dRmin>0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|>1.2}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|>1.2}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|<1.2}$ region, arising from the decay of $\tau$ leptons for 0.2<dRmin<0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|<1.2}$ region, arising from the decay of $\tau$ leptons for dRmin>0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|<1.2}$ region, arising from the decay of $\tau$ leptons for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|<1.2}$ region, arising from the decay of $\tau$ leptons for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|>1.2}$ region, arising from the decay of $\tau$ leptons for 0.2<dRmin<0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|>1.2}$ region, arising from the decay of $\tau$ leptons for dRmin>0.4. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|>1.2}$ region, arising from the decay of $\tau$ leptons for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for muons in the $\mathrm{|\eta|>1.2}$ region, arising from the decay of $\tau$ leptons for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for 1-prong $\tau_{h}$ in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of SM gauge bosons (W/Z/h) for dRmin>0.2. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for 1-prong $\tau_{h}$ in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for 1-prong $\tau_{h}$ in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for 1-prong $\tau_{h}$ in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for dRmin>0.2. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for 1-prong $\tau_{h}$ in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for 1-prong $\tau_{h}$ in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for 1-prong $\tau_{h}$ in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for dRmin>0.2. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for 1-prong $\tau_{h}$ in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for 1-prong $\tau_{h}$ in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for 3-prong $\tau_{h}$ in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of SM gauge bosons (W/Z/h) for dRmin>0.2. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for 3-prong $\tau_{h}$ in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for 3-prong $\tau_{h}$ in the $\mathrm{|\eta|<1.1}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for 3-prong $\tau_{h}$ in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for dRmin>0.2. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for 3-prong $\tau_{h}$ in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for 3-prong $\tau_{h}$ in the $\mathrm{|\eta|>1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for 3-prong $\tau_{h}$ in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for dRmin>0.2. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for 3-prong $\tau_{h}$ in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}<2}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
Reconstruction efficiency and associated uncertainty maps for 3-prong $\tau_{h}$ in the $\mathrm{1.1<|\eta|<1.6}$ region, arising from the decay of SM gauge bosons (W/Z/h) for $\mathrm{N_{j}>1}$. The lepton efficiency is estimated in a simulated event sample for the ZZ process. For a given input generator-level $\mathrm{p_{T}}$, the efficiency map provides the probability distribution of the reconstructed $\mathrm{p_{T}}$, accounting for reconstruction and identification efficiency, and the $\mathrm{p_{T}}$ resolution. The x-axis and the y-axis represent bins in the reconstructed and generated lepton $\mathrm{p_{T}}$, respectively.
The SR distributions of the Fundamental $\mathrm{L_{T}+p_{T}^{miss}}$ table for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the type-III seesaw heavy fermions in the flavor-democratic scenario for $\mathrm{m_{\Sigma}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the Fundamental $\mathrm{S_{T}}$ table for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the vector-like $\tau$ lepton in the doublet scenario for $\mathrm{m_{\tau'}}$ = 1 TeV, before the fit, is also overlaid.
The SR distributions of the Advanced $\mathrm{S_{T}}$ table for the combined 2016-2018 data set. The detailed description of the bin numbers can be found in Tables 3-6 in the paper. The lower panel shows the ratio of observed events to the total expected background prediction. The gray band on the ratio represents the sum of statistical and systematic uncertainties in the SM background predictions. The expected SM background distributions and the uncertainties are shown before fitting the data under the background-only hypothesis. For illustration, an example signal hypothesis for the production of the scalar leptoquark coupled to a top quark and a muon for $\mathrm{m_{S}}$ = 1.4 TeV, before the fit, is also overlaid.
A search for W$\gamma$ resonances in the mass range between 0.7 and 6.0 TeV is presented. The W boson is reconstructed via its hadronic decays, with the final-state products forming a single large-radius jet, owing to a high Lorentz boost of the W boson. The search is based on proton-proton collision data at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$, collected with the CMS detector at the LHC in 2016-2018. The W$\gamma$ mass spectrum is parameterized with a smoothly falling background function and examined for the presence of resonance-like signals. No significant excess above the predicted background is observed. Model-specific upper limits at 95% confidence level on the product of the cross section and branching fraction to the W$\gamma$ channel are set. Limits for narrow resonances and for resonances with an intrinsic width equal to 5% of their mass, for spin-0 and spin-1 hypotheses, range between 0.17 fb at 6.0 TeV and 55 fb at 0.7 TeV. These are the most restrictive limits to date on the existence of such resonances over a large range of probed masses. In specific heavy scalar (vector) triplet benchmark models, narrow resonances with masses between 0.75 (1.15) and 1.40 (1.36) TeV are excluded for a range of model parameters. Model-independent limits on the product of the cross section, signal acceptance, and branching fraction to the W$\gamma$ channel are set for minimum W$\gamma$ mass thresholds between 1.5 and 8.0 TeV.
Fitted 4th order polynomials to the signal acceptance for narrow and broad, scalar and vector Wgamma resonances. This quantity is defined as the ratio between the number of signal events falling within the analysis acceptance at the generator level to the number of signal events generated. The fitting function is $ A = p0 + p1*m + p2*m^2 + p3*m^3 + p4*m^4$, where $ A$ is the acceptance and m is the signal mass.
Fitted 4th order polynomials to the product of the signal efficiency and acceptance for narrow and broad, scalar and vector Wgamma resonances. This quantity is defined as the ratio between the number of signal events passing full analysis cuts to the number of signal events generated. The fitting function is $ A \epsilon = p0 + p1*m + p2*m^2 + p3*m^3 + p4*m^4$, where $ A \epsilon$ is the product of the signal efficiency and acceptance, m is the signal mass.
W tagging efficiency, averaged for different spin and width hypotheses. The Standard deviation shown below is the standard deviation between the W tagging efficiencies for different spin and width hypotheses.
Observed and expected (background-only fitted) invariant mass spectra of Wgamma events. The fitted function is ${ d N}/{ d m} = p_{0} * (m/\sqrt{s})^{p_{1} + p_{2} * \log(m/\sqrt{s}) + p_{3} * \log^{2}(m/\sqrt{s})}$
Expected and observed 95% CL upper limits on the product of the cross section and branching fraction for narrow scalar Wgamma resonances. Limits are compared to predicted cross sections for the heavy scalar triplet model described in arXiv:1912.08234
Expected and observed 95% CL upper limits on the product of the cross section and branching fraction for broad scalar Wgamma resonances.
Expected and observed 95% CL upper limits on the product of the cross section and branching fraction for narrow vector Wgamma resonances. Limits are compared to predicted cross sections for the heavy vector triplet model described in arXiv:1912.08234
Expected and observed 95% CL upper limits on the product of the cross section and branching fraction for broad vector Wgamma resonances.
Expected and observed model-independent 95% CL upper limits on the product of the cross section, branching fraction and signal acceptance for general Wgamma resonances.
Expected and observed model-independent 95% CL upper limits on the product of the cross section, branching fraction, signal acceptance and W tagging efficiency for general Jgamma resonances.
A search for events with large missing transverse momentum, jets, and at least two tau leptons has been performed using 2 fb^-1 of proton-proton collision data at sqrt(s) = 7 TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed and a 95% CL visible cross section upper limit for new phenomena is set. A 95% CL lower limit of 32 TeV is set on the GMSB breaking scale Lambda independent of tan(beta). These limits provide the most stringent tests to date in a large part of the considered parameter space.
The observed PT spectrum of the leading TAU candidates and the estimated SM background after pre-selection of candidate events, soft multi-jet rejection and the requirement of two or more TAUS and no light leptons.
The distribution of the effective mass of the two leading TAU candidates in data (with statistical uncertainties only) and the estimated SM background after pre-selection of candidate events, soft multi-jet rejection and the requirement of two or more TAUS and no light leptons.
The distribution of the sum of the transverse masses of the two leading TAU candidates in data (with statistical uncertainties only) and the estimated SM background after pre-selection of candidate events, soft multi-jet rejection and the requirement of two or more TAUS and no light leptons.
The observed 95% CL limits on the minimal GMSB model parameters Lambda and tan(beta) over the tan(beta) region 0.8 to 6.8.
The observed 95% CL limits on the minimal GMSB model parameters Lambda and tan(beta) over the tan(beta) region 6.8 to 12.8.
The observed 95% CL limits on the minimal GMSB model parameters Lambda and tan(beta) over the tan(beta) region 12.8 to 18.8.
The observed 95% CL limits on the minimal GMSB model parameters Lambda and tan(beta) over the tan(beta) region 18.8 to 24.8.
The observed 95% CL limits on the minimal GMSB model parameters Lambda and tan(beta) over the tan(beta) region 24.8 to 30.8.
The observed 95% CL limits on the minimal GMSB model parameters Lambda and tan(beta) over the tan(beta) region 30.8 to 36.8.
The observed 95% CL limits on the minimal GMSB model parameters Lambda and tan(beta) over the tan(beta) region 36.8 to 42.8.
The observed 95% CL limits on the minimal GMSB model parameters Lambda and tan(beta) over the tan(beta) region 42.8 to 48.8.
The observed 95% CL limits on the minimal GMSB model parameters Lambda and tan(beta) over the tan(beta) region 48.8 to 51.2.
The observed and expected 95% CL limits on the minimal GMSB model parameters Lambda and tan(beta).
The acceptance, efficiency and their product in the Lambda-Tan(Beta)-plane for M_mess=250 TeV, N_5=3 and C_grav=1.
The relative systematic uncertainty from the selection, theoretical and statistical uncertainities and their combined values.
The observed 95% CL upper limits on the visible and production cross sections in the Lambda-Tan(Beta) plane for stau and slepton NLSP production in the minimal GMSB model.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.