The Split Field Magnet facility at the CERN ISR has been used to measure inclusive resonance production in inelastic p-p collisions at a c.m. energy of 53 GeV. The mass spectrum of pairs of oppositely charged hadrons shows a strong correlation, which can be explained as a consequence of dominant vector meson production, accounting for more than 60% of all pions and kaons produced.
No description provided.
No description provided.
No description provided.
A measurement of the coherent regeneration amplitude in carbon in the energy range 30-130 GeV is presented. The results are consistent with the dominance of this process by ω exchange, and a precise value of the intercept of the ω trajectory is obtained: αω(0)=0.390±0.014.
No description provided.
Charged hadron production via e + e − → h ± X where h ± = π ± , K ± , p ̄ has been measured for s values between 13 and 25 GeV 2 . Inclusive cross sections and the evidence for scaling are presented.
No description provided.
We have measured the production cross section for K s 0 in e + e − annihilation from 3.6 to 5.0 GeV center of mass energy. A substantial increase of the K s 0 yield is observed around 4 GeV in qualitative agreement with the charm hypothesis.
THE DATA GIVEN HERE AT 9.3 GEV AND ABOVE ARE REPORTED IN C. BERGER ET AL., PL 104B, 79 (1981). THE 12.0 AND 30 GEV DATA WERE TAKEN AT PETRA.
No description provided.
No description provided.
The total cross section for K ± production in e + e − collisions was measured for cms energies between 3.6 and 5 GeV and was found to increase by a factor of 2–3 from 3.6 to 4.1 GeV.
No description provided.
Results are presented on the inclusive π ± production in K − p interactions at 32.1 GeV/ c . The invariant longitudinal distributions have been calculated both for π + and π − in the backward c.m. hemisphere and extrapolated in the forward hemisphere under some physical assumptions. The inclusive cross sections for π + and π − amount to 32.9 ± 1.5 mb and 35.0 ± 0.7 mb respectively. The energy dependence of the inclusive pion production has been analyzed in the framework of Mueller-Regge phenomenology both in the proton fragmentation and in the central region.
No description provided.
No description provided.
No description provided.
We present evidence for a large scalar contribution to the cross section for the reaction ep→eK+Λ. No evidence for a scalar contribution is found for the reaction ep→eK+Σ0. This is reminiscent of the results for the π+n and π+Δ0 final states.
AVERAGED OVER PHI. FOR LOW EPSILON, SOME DEUTERIUM DATA ARE INCLUDED. INCLUDING EARLIER MEASUREMENTS AT HIGH EPSILON.
AVERAGED OVER PHI. INCLUDING EARLIER MEASUREMENTS AT HIGHER EPSILON.
Inclusive φ production is studied in π − p collisions at 16 GeV/ c . The φ cross section for Feynman variable x φ > 0.2 is found to be (15.5 ± 3.6) μb. This leads to an extrapolated cross section of (29.9 ± 7.0) μb for x φ > 0.0. Fitting the momentum transfer squared distribution of the φ to the form e −bp 2 T gives an average slope of b = (2.4 ± 0.3) (GeV/ c −2 for x φ > 0.5.
No description provided.
No description provided.
DATA OBTAINED FROM FIGURE BY A.A. LEBEDEV.
We present results for the total cross section of e + e − annihilation into two hadrons at 1.6 GeV: σ ππ = σ KK = (1.8 ± 1.1) × 10 -33 cm 2 .From these values we obtain the time-like electromagnetic form factors these mesons: | F π | 2 = 0.24 ± 0.14 and | F K | 2 = 0.46 ± 0.26.
No description provided.
We compare production of the low mass K π -resonances by K + and K − beams in the non-charge-exchange reactions K ± p → K 0 s π ± p at 10 GeV/ c . High statistics data, obtained with the same apparatus, allow extraction of the K ∗ (890) and K ∗ (1420) production amplitudes corresponding to unnatural and natural parity exchange in the t -channel. The NPE-part dominates in both charge states. Its t -dependence shows a strong crossover at t ≈ −0.3 (GeV/ c ) 2 for the K ∗ (1420). For the K ∗ (890) the crossover is weaker but it occurs at the same value of t . This behaviour can be explained by pomeron, f and ω Regge exchange contributions to the NPE amplitude. The UPE amplitudes agree, both in normalisation and t -dependence, with the expectations of π and B exchange as isolated from data for the charge exchange reaction K − p → (K − π + )n.
No description provided.