Precise study of the Z/gamma* boson transverse momentum distribution in ppbar collisions using a novel technique

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Abolins, Maris A. ; et al.
Phys.Rev.Lett. 106 (2011) 122001, 2011.
Inspire Record 871787 DOI 10.17182/hepdata.56732

Using 7.3 pb-1 of ppbar collisions collected by the D0 detector at the Fermilab Tevatron, we measure the distribution of the variable \phistar, which probes the same physical effects as the Z/gamma* boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. A QCD prediction is found to describe the general features of the \phistar distribution, but is unable to describe its detailed shape or dependence on boson rapidity. A prediction that includes a broadening of transverse momentum for small values of the parton momentum fraction is strongly disfavored.

0 data tables match query

Measurement of the normalized Z/gamma*->mu+mu- transverse momentum distribution in p\bar{p} collisions at sqrt{s}=1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Abolins, Maris A. ; et al.
Phys.Lett.B 693 (2010) 522-530, 2010.
Inspire Record 856972 DOI 10.17182/hepdata.55457

We present a new measurement of the Z/gamma* transverse momentum distribution in the range 0 - 330GeV, in proton-antiproton collisions at sqrt{s}=1.96 TeV. The measurement uses 0.97 fb-1 of integrated luminosity recorded by the D0 experiment and is the first using the Z/gamma*->mu+mu- + X channel at this center-of-mass energy. This is also the first measurement of the Z/gamma* transverse momentum distribution that presents the result at the level of particles entering the detector, minimizing dependence on theoretical models. As any momentum of the Z/gamma* in the plane transverse to the incoming beams must be balanced by some recoiling system, primarily the result of QCD radiation in the initial state, this variable is an excellent probe of the underlying process. Tests of the predictions of QCD calculations and current event generators show they have varied success in describing the data. Using this measurement as an input to theoretical predictions will allow for a better description of hadron collider data and hence it will increase experimental sensitivity to rare signals.

0 data tables match query

Measurement of the b jet cross-section in events with a Z boson in p anti-p collisions at s**(1/2) = 1.96-TeV

The CDF collaboration Abulencia, A. ; Acosta, Darin E. ; Adelman, Jahred A. ; et al.
Phys.Rev.D 74 (2006) 032008, 2006.
Inspire Record 717572 DOI 10.17182/hepdata.41805

A measurement of the inclusive bottom jet cross section is presented for events containing a $Z$ boson in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV using the Collider Detector at Fermilab. $Z$ bosons are identified in their electron and muon decay modes, and $b$ jets with $E_T>20$ GeV and $|\eta|<1.5$ are identified by reconstructing a secondary decay vertex. The measurement is based on an integrated luminosity of about 330 ${\rm pb}^{-1}$. A cross section times branching ratio of $\sigma (Z+b {\rm jets}) \times {\cal B}(Z \to \ell^+ \ell^-)= 0.93 \pm 0.36$ pb is found, where ${\cal B}(Z\to \ell^+ \ell^-)$ is the branching ratio of the $Z$ boson or $\gamma^*$ into a single flavor dilepton pair ($e$ or $\mu$) in the mass range between 66 and 116 GeV$/c^2$. The ratio of $b$ jets to the total number of jets of any flavor in the $Z$ sample, within the same kinematic range as the $b$ jets, is $2.36 \pm 0.92%$. Here, the uncertainties are the quadratic sum of statistical and systematic uncertainties. Predictions made with NLO QCD agree, within experimental and theoretical uncertainties, with these measurements.

0 data tables match query

Measurement of the ratio of differential cross-sections for W and Z boson production as a function of transverse momentum in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abdesselam, A. ; et al.
Phys.Lett.B 517 (2001) 299-308, 2001.
Inspire Record 559624 DOI 10.17182/hepdata.42897

We report on a measurement of the ratio of the differential cross sections for W and Z boson production as a function of transverse momentum in proton-antiproton collisions at sqrt(s) = 1.8 TeV. This measurement uses data recorded by the D0 detector at the Fermilab Tevatron in 1994-1995. It represents the first investigation of a proposal that ratios between W and Z observables can be calculated reliably using perturbative QCD, even when the individual observables are not. Using the ratio of differential cross sections reduces both experimental and theoretical uncertainties, and can therefore provide smaller overall uncertainties in the measured mass and width of the W boson than current methods used at hadron colliders.

0 data tables match query