Date

Prompt and non-prompt J/$\psi$ production and nuclear modification at mid-rapidity in p-Pb collisions at ${\bf \sqrt{{\it s}_{\text{NN}}}= 5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 78 (2018) 466, 2018.
Inspire Record 1652829 DOI 10.17182/hepdata.81948

A measurement of beauty hadron production at mid-rapidity in proton-lead collisions at a nucleon-nucleon centre-of-mass energy $\sqrt{s_{\rm NN}}=5.02$ TeV is presented. The semi-inclusive decay channel of beauty hadrons into J/$\psi$ is considered, where the J/$\psi$ mesons are reconstructed in the dielectron decay channel at mid-rapidity down to transverse momenta of 1.3 GeV/$c$. The ${\rm {b\overline{b}}}$ production cross section at mid-rapidity, ${\rm d}\sigma_{\rm {b\overline{b}}}/{\rm d} y$, and the total cross section extrapolated over full phase space, $\sigma_{\rm {b\overline{b}}}$, are obtained. This measurement is combined with results on inclusive J/$\psi$ production to determine the prompt J/$\psi$ cross sections. The results in p-Pb collisions are then scaled to expectations from pp collisions at the same centre-of-mass energy to derive the nuclear modification factor $R_{\rm pPb}$, and compared to models to study possible nuclear modifications of the production induced by cold nuclear matter effects. $R_{\rm pPb}$ is found to be smaller than unity at low $p_{\rm T}$ for both J/$\psi$ coming from beauty hadron decays and prompt J/$\psi$.

12 data tables

Fraction of non-prompt J/$\psi$ in pp collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for different $p_{\rm T}$ ranges, as determined with a procedure of interpolation from measurments at other energies. It is not a direct measurment.

Fraction of non-prompt J/$\psi$ in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for different $p_{\rm T}$ ranges.

Fraction of non-prompt J/$\psi$ in pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV for different $p_{\rm T}$ ranges.

More…

$\Lambda_{\rm c}^+$ production in pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 04 (2018) 108, 2018.
Inspire Record 1645239 DOI 10.17182/hepdata.81727

The $p_{\rm T}$-differential production cross section of prompt $\Lambda_{\rm c}^+$ charmed baryons was measured with the ALICE detector at the Large Hadron Collider (LHC) in pp collisions at $\sqrt{s} = 7$ TeV and in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV at midrapidity. The $\Lambda_{\rm c}^+$ and ${\overline{\Lambda}}_{\rm c}^-$ were reconstructed in the hadronic decay modes $\Lambda_{\rm c}^+\rightarrow {\rm p}{\rm K^-}\pi^+$, $\Lambda_{\rm c}^+\rightarrow {\rm p}{\rm K_{\rm S}^0}$ and in the semileptonic channel $\Lambda_{\rm c}^+\rightarrow {\rm e^+}\nu_{\rm e}\Lambda$ (and charge conjugates). The measured values of the $\Lambda_{\rm c}^+/{\rm D_0}$ ratio, which is sensitive to the c-quark hadronisation mechanism, and in particular to the production of baryons, are presented and are larger than those measured previously in different colliding systems, centre-of-mass energies, rapidity and $p_{\rm T}$ intervals, where the $\Lambda_{\rm c}^+$ production process may differ. The results are compared with the expectations obtained from perturbative Quantum Chromodynamics calculations and Monte Carlo event generators. Neither perturbative QCD calculations nor Monte Carlo models reproduce the data, indicating that the fragmentation of heavy-flavour baryons is not well understood. The first measurement at the LHC of the $\Lambda_{\rm c}^+$ nuclear modification factor, $R_{\rm pPb}$, is also presented. The $R_{\rm pPb}$ is found to be consistent with unity and with that of D mesons within the uncertainties, and consistent with a theoretical calculation that includes cold nuclear matter effects and a calculation that includes charm quark interactions with a deconfined medium.

7 data tables

Prompt $\Lambda_{\rm {c}}^{+}$ baryon $p_{\rm {T}}$-differential cross section (average among different decay modes and analyses) in pp collisions at $\sqrt{s} = 7$ TeV in the rapidity interval $|y|<0.5$.

Prompt $\Lambda_{\rm {c}}^{+}$ baryon $p_{\rm {T}}$-differential cross section (average among different decay modes and analyses) in p-Pb collisions at $\sqrt{s_{\rm {NN}}} = 5.02$ TeV in the rapidity interval $-0.96 \lt y \lt 0.04$.

The $\Lambda_{\rm {c}}^{+}$/${\rm D}^{0}$ ratio measured in pp collisions at $\sqrt{s} = 7$ TeV in the rapidity interval $|y|<0.5$ as a function of $p_{\rm {T}}$.

More…

Version 2
Charged-particle nuclear modification factors in PbPb and pPb collisions at sqrt(s[NN)]=5.02 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 04 (2017) 039, 2017.
Inspire Record 1496050 DOI 10.17182/hepdata.77101

The spectra of charged particles produced within the pseudorapidity window abs(eta) < 1 at sqrt(s[NN]) = 5.02 TeV are measured using 404 inverse microbarns of PbPb and 27.4 inverse picobarns of pp data collected by the CMS detector at the LHC in 2015. The spectra are presented over the transverse momentum ranges spanning 0.5 < pt < 400 GeV in pp and 0.7 < pt < 400 GeV in PbPb collisions. The corresponding nuclear modification factor, R[AA], is measured in bins of collision centrality. The R[AA] in the 5% most central collisions shows a maximal suppression by a factor of 7-8 in the pt region of 6-9 GeV. This dip is followed by an increase, which continues up to the highest pt measured, and approaches unity in the vicinity of pt = 200 GeV. The R[AA] is compared to theoretical predictions and earlier experimental results at lower collision energies. The newly measured pp spectrum is combined with the pPb spectrum previously published by the CMS Collaboration to construct the pPb nuclear modification factor, R[pA], up to 120 GeV. For pt > 20 GeV, R[pA] exhibits weak momentum dependence and shows a moderate enhancement above unity.

16 data tables

Charged-particle per-event yields measured in 0-5% PbPb centrality class.

Charged-particle per-event yields measured in 5-10% PbPb centrality class.

Charged-particle per-event yields measured in 10-30% PbPb centrality class.

More…

D-meson production in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV and in pp collisions at $\sqrt{s}=7$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.C 94 (2016) 054908, 2016.
Inspire Record 1465513 DOI 10.17182/hepdata.73941

The production cross sections of the prompt charmed mesons D$^0$, D$^+$, D$^{*+}$ and D$_s$ were measured at mid-rapidity in p-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector at the LHC. D mesons were reconstructed from their decays D$^0\rightarrow{\rm K}^-\pi^+$, D$^+\rightarrow{\rm K}^-\pi^+\pi^+$, D$^{*+}\rightarrow D^0\pi^+$, D$_s^+\rightarrow\phi\pi^+\rightarrow{\rm K}^-{\rm K}^+\pi^+$, and their charge conjugates. The $p_{\rm T}$-differential production cross sections were measured at mid-rapidity in the interval $1

21 data tables

pT-differential cross section of inclusive Dzero mesons in pp collisions at sqrt{sNN}=7 TeV in the rapidity interval |y|<0.5. Branching ratio of D0->Kpi : 0.0388.

pT-differential cross section of prompt Dzero mesons in pp collisions at sqrt{sNN}=7 TeV in the rapidity interval |y|<0.5. Branching ratio of D0->Kpi : 0.0388. Data points for pt<2 GeV/c from analysis "without vertexing". Data points for pt>2 GeV/c from the analysis "with vertexing" taken from JHEP 1201 (2012) 128 (http://hepdata.cedar.ac.uk/view/ins944757) and corrected for the updated BR value.

First column: production cross sections per unit of rapidity for prompt D0 mesons, inclusive D0 mesons (no feed-down subtraction) and charm quarks at mid-rapidity in pp collisions at 7 TeV. For D0 mesons, the second (sys) error is from the luminosity uncertainty, the third (sys) error is from the branching-ratio uncertainties. For charm quarks, the second (sys) error is from the luminosity uncertainty, the third (sys) error is from the Fragmentation Function uncertainties, the fourth (sys) error is from the rapidity shapes of D0 mesons and single charm quarks. Second column: total production cross sections, extrapolated to the full phase space, for prompt D0 mesons and charm quarks. For D0 mesons, the second (sys) error is the from the extrapolation uncertainty, the third from the luminosity uncertainty and the fourth from the branching-ratio uncertainties. For charm quarks, the second (sys) error is from the extrapolation, the third is from the luminosity uncertainty and the fourth is from the Fragmentation Function uncertainties. Third column: value of <pT> of prompt D0 mesons. The first uncertainty is statistical, the second is the systematic uncertainty.

More…

Centrality dependence of $\mathbf{\psi}$(2S) suppression in p-Pb collisions at $\mathbf{\sqrt{{\textit s}_{\rm NN}}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 06 (2016) 050, 2016.
Inspire Record 1426826 DOI 10.17182/hepdata.73306

The inclusive production of the $\psi$(2S) charmonium state was studied as a function of centrality in p-Pb collisions at the nucleon-nucleon center of mass energy $\sqrt{s_{\rm NN}}$ = 5.02 TeV at the CERN LHC. The measurement was performed with the ALICE detector in the center of mass rapidity ranges $-4.46

7 data tables

Centrality-differential cross section dsigma_JPsi/dy in the backward and forward rapidity ranges (-4.46<y_cms<-2.96 and 2.03<y_cms<3.53). The first uncertainty is statistical, the second is a systematic one. The third uncertainty is a systematic uncertainty fully correlated over centrality.

Centrality dependence of the Psi(2S)/J/Psi ratio in the backward and forward rapidity ranges (-4.46<y_cms<-2.96 and 2.03<y_cms<3.53). The first uncertainty is statistical, the second is a systematic one. The third systematic uncertainty is fully correlated over centrality.

Centrality dependence of the (Psi(2S)/J/Psi)_pA/(Psi(2S)/J/Psi)_pp double ratio in the backward and forward rapidity range (-4.46<y_cms<-2.96 and 2.03<y_cms<3.53). The first uncertainty is statistical, the second one is a systematic one. The third systematic uncertainty is fully correlated over centrality, but uncorrelated versus rapidity, while the fourth uncertainty is fully correlated over centrality and over rapidity.

More…

Measurement of D-meson production versus multiplicity in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Adam, J. ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 08 (2016) 078, 2016.
Inspire Record 1423072 DOI 10.17182/hepdata.73775

The measurement of prompt D-meson production as a function of multiplicity in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector at the LHC is reported. D$^0$, D$^+$ and D$^{*+}$ mesons are reconstructed via their hadronic decay channels in the centre-of-mass rapidity range $-0.96< y_{\mathrm{cms}}<0.04$ and transverse momentum interval $1

5 data tables

Average $Q_{\rm pPb}$ of D$^{0}$, D$^{+}$ and D*$^{+}$ mesons for the sum of particles and antiparticles in several multiplicity and PT(D) intervals for p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV as a function of the multiplicity at central rapidity evaluated with the ZNA estimator. The values are reported together with their uncertainties, which are quoted as statistical followed by systematic uncertainties. Normalisation uncertainty is not quoted and amounts to $\pm 0.07$, $\pm 0.05$, $\pm 0.07$ and $\pm 0.08$ for the 0-20%, 20-40%, 40-60% and 60-100% intervals, respectively.

Average $Q_{\rm pPb}$ of D$^{0}$, D$^{+}$ and D*$^{+}$ mesons for the sum of particles and antiparticles in several multiplicity and PT(D) intervals for p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV as a function of the multiplicity at central rapidity evaluated with the CL1 estimator. The values are reported together with their uncertainties, which are quoted as statistical followed by systematic uncertainties. Normalisation uncertainty is not quoted and amounts to $\pm 0.05$, $\pm 0.05$, $\pm 0.07$ and $\pm 0.23$ for the 0-20%, 20-40%, 40-60% and 60-100% intervals, respectively.

Average $Q_{\rm pPb}$ of D$^{0}$, D$^{+}$ and D*$^{+}$ mesons for the sum of particles and antiparticles in several multiplicity and PT(D) intervals for p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV as a function of the multiplicity at central rapidity evaluated with the V0A estimator. The values are reported together with their uncertainties, which are quoted as statistical followed by systematic uncertainties. Normalisation uncertainty is not quoted and amounts to $\pm 0.05$, $\pm 0.05$, $\pm 0.06$ and $\pm 0.22$ for the 0-20%, 20-40%, 40-60% and 60-100% intervals, respectively.

More…

$\rm{J}/\psi$ production at low transverse momentum in p+p and d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 93 (2016) 064904, 2016.
Inspire Record 1420183 DOI 10.17182/hepdata.73526

We report on the measurement of $\rm{J}/\psi$ production in the dielectron channel at mid-rapidity (|y|<1) in p+p and d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV from the STAR experiment at the Relativistic Heavy Ion Collider. The transverse momentum $p_{T}$ spectra in p+p for $p_{T}$ < 4 GeV/c and d+Au collisions for $p_{T}$ < 3 GeV/c are presented. These measurements extend the STAR coverage for $\rm{J}/\psi$ production in p+p collisions to low $p_{T}$. The $$ from the measured $\rm{J}/\psi$ invariant cross section in p+p and d+Au collisions are evaluated and compared to similar measurements at other collision energies. The nuclear modification factor for $\rm{J}/\psi$ is extracted as a function of $p_{T}$ and collision centrality in d+Au and compared to model calculations using the modified nuclear Parton Distribution Function and a final-state $\rm{J}/\psi$ nuclear absorption cross section.

6 data tables

The mean square of $p_T$.

Nuclear absorption cross section.

The nuclear modicifation factor vs. $p_T$ for $J\psi$ with |y| < 1 in 0-100 percent central d+Au collisions.

More…

Study of B meson production in pPb collisions at sqrt(s_NN) = 5.02 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 116 (2016) 032301, 2016.
Inspire Record 1390110 DOI 10.17182/hepdata.71407

The production cross sections of the B+, B0, and B0s mesons, and of their charge conjugates, are measured via exclusive hadronic decays in pPb collisions at the center-of-mass energy sqrt(s_NN) = 5.02 TeV with the CMS detector at the CERN LHC. The data set used for this analysis corresponds to an integrated luminosity of 34.6 inverse nanobarns. The production cross sections are measured in the transverse momentum range between 10 and 60 GeV/c. No significant modification is observed compared to proton-proton perturbative QCD calculations scaled by the number of incoherent nucleon-nucleon collisions. These results provide a baseline for the study of in-medium b quark energy loss in PbPb collisions.

8 data tables

The measured $p_{\rm{T}}$-differential production cross section of $B^{+}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.

The measured $p_{\rm{T}}$-differential production cross section of $B^{0}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.

The measured $p_{\rm{T}}$-differential production cross section of $B_{s}^{0}$ in $p$ + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, together with the cross section calculated by the FONLL model.

More…

Measurements of longitudinal and transverse momentum distributions for neutral pions in the forward-rapidity region with the LHCf detector

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
Phys.Rev.D 94 (2016) 032007, 2016.
Inspire Record 1385877 DOI 10.17182/hepdata.74066

The differential cross sections for inclusive neutral pions as a function of transverse and longitudinal momentum in the very forward rapidity region have been measured at the Large Hadron Collider (LHC) with the Large Hadron Collider forward detector (LHCf) in proton-proton collisions at $\sqrt{s}=$ 2.76 and 7 TeV and in proton-lead collisions at nucleon-nucleon center-of-mass energies of $\sqrt{s_\text{NN}}=$ 5.02 TeV. Such differential cross sections in proton-proton collisions are compatible with the hypotheses of limiting fragmentation and Feynman scaling. Comparing proton-proton with proton-lead collisions, we find a sizable suppression of the production of neutral pions in the differential cross sections after subtraction of ultra-peripheral proton-lead collisions. This suppression corresponds to the nuclear modification factor value of about 0.1-0.3. The experimental measurements presented in this paper provide a benchmark for the hadronic interaction Monte Carlo simulation codes that are used for the simulation of cosmic ray air showers.

20 data tables

The average $\pi^{0}$ transverse momenta for the rapidity range $8.8<y<10.6$ in $p+p$ collisions at $\sqrt{s}=2.76$ and 7 TeV and for the rapidity range $-8.8>y_\rm{lab}>-10.6$ in $p+\rm{Pb}$ collisions at $\sqrt{s_\rm{NN}}=5.02$ TeV. The rapidity values for $p+\rm{Pb}$ collisions are in the detector reference frame and must be multiplied by -1.

Production rate for the $\pi^{0}$ production in the rapidity range $8.8 < y < 9.0$ in $p+p$ collisions and in the rapidity range $-8.8 > y_\rm{lab} > -9.0$ in $p+\rm{Pb}$ collisions.

Production rate for the $\pi^{0}$ production in the rapidity range $9.0 < y < 9.2$ in $p+p$ collisions and in the rapidity range $-9.0 > y_\rm{lab} > -9.2$ in $p+\rm{Pb}$ collisions.

More…

Rapidity and transverse-momentum dependence of the inclusive J/$\mathbf{\psi}$ nuclear modification factor in p-Pb collisions at $\mathbf{\sqrt{\textit{s}_{NN}}}=5.02$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 06 (2015) 055, 2015.
Inspire Record 1355544 DOI 10.17182/hepdata.70846

We have studied the transverse-momentum ($p_{\rm T}$) dependence of the inclusive J/$\psi$ production in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, in three center-of-mass rapidity ($y_{\rm cms}$) regions, down to zero $p_{\rm T}$. Results in the forward and backward rapidity ranges ($2.03 < y_{\rm cms} < 3.53$ and $-4.46

9 data tables

$p_{\rm T}$-differential inclusive cross section ${\rm d}^2\sigma^{J/\psi}/{\rm d}y{\rm d}p_{T}$ in the backward rapidity range (-4.46<$y_{\rm cms}$<-2.96). The first uncertainty is statistical, the second one is the $p_{\rm T}$-uncorrelated systematic uncertainty, while the third is the $p_{\rm T}$-correlated one.

$p_{\rm T}$-differential inclusive cross section ${\rm d}^2\sigma^{J/\psi}/{\rm d}y{\rm d}p_{T}$ in the mid-rapidity range (-1.37<$y_{\rm cms}$<0.43). The first uncertainty is statistical, the second one is the $p_{\rm T}$-uncorrelated systematic uncertainty, while the third is the $p_{\rm T}$-correlated one.

$p_{\rm T}$-differential inclusive cross section ${\rm d}^2\sigma^{J/\psi}/{\rm d}y{\rm d}p_{T}$ in the forward rapidity range (2.03<$y_{\rm cms}$<3.53). The first uncertainty is statistical, the second one is the $p_{\rm T}$-uncorrelated systematic uncertainty, while the third is the $p_{\rm T}$-correlated one.

More…