Measurements have been made of the differential cross section and asymmetry A on for p p elastic scattering at 15 incident momenta between 497 MeV/ c and 1550 MeV/ c . The angular range where both particles have enough energy to traverse target and setup has been covered. The results are compared with predictions of various N N potential models. None of these models fully explains the present results, although the general trend of the data is predicted correctly.
No description provided.
No description provided.
No description provided.
We have searched for resonance production in the reaction γγ→Ks0Kπ. No signal was found for theηc and an upper limit for the radiative with\(\Gamma _{\gamma \gamma }^{\eta _c } \) keV (95% c.l.) is obtained. For the glueball candidate η(1440) (previouslyi) the upper limit\(\Gamma _{\gamma \gamma }^{\eta (1440)} B(\eta (1440) \to K\bar K\pi )< 1.2keV(95\% c.l.)\) is derived. In the tagged data sample resonance formation of a spin 1 state at 1420 MeV is observed, which is absent in the untagged data. The mass and width of this state are consistent with those of thef1(1420); an analysis of decay angular distributions favours positive parity.
Data read from graph.. Additional overall systematic error decreasing from 25% in the lowest mass bins to 15% for M > 2.0 GeV.
Asymmetries A 0 n have been measured at LEAR for s¯s elastic scattering for 15 beam momenta from 497 to 1550 MeV/ c .
No description provided.
No description provided.
No description provided.
We have measured the fivefold differential cross section d5σ/dΩπdΩγdEγ for the process π+p→π+pγ with incident pions of energy 299 MeV. The angular regions for the outgoing pions (55°≤θlabπ≤95°), and photons (θlabγ=241°±10°) in coplanar geometry are selected to maximize the sensitivity to the radiation from the magnetic dipole moment of the Δ++(1232) resonance. At low photon energies, the data agree with the soft-photon approximation to pion-proton bremsstrahlung. At forward pion angles the data agree with older data and with the latest theoretical calculations for 2.3μp≤μΔ≤3.3μp. However at more backward pion angles where no data existed, the predictions fail.
No description provided.
No description provided.
Two high statistics measurements of antiproton-proton small-angle elastic scattering, at p = 233 MeV/ c and p = 272 MeV/ c , are presented. The measurements were carried out at the LEAR facility at CERN. By the Coulomb-nuclear interference method, values are obtained for the real-to-imaginary ratio ρ of the p̄p forward nuclear scattering amplitude and for its exponential slope b : ρ = + 0.041 ± 0.026 and b = 71.5 ± 4.5 (GeV/ c ) −2 at 233 MeV/ c and ρ = −0.014 ± 0.027 and b = 47.7 ± 2.7 (GeV/ c ) −2 at 272 MeV/ c . The method to derive these values is discussed in detail and so are the uncertainties contributing to their systematic error. The results are compared with predictions from forward dispersion relation calculations and with predictions from p̄p potential models.
The corrected cross section is the measured divided by the average folding correction given in the paper.
The corrected cross section is the measured divided by the average folding Correction given in the paper.
Fits to data use the value of total cross sections of 263 & 296 mb for 272 & 233 Mev respectively derived from the authors total cross sections measurement. ETA is the spin dependence parameter.
The process γγ→π+π−π+π− has been investigated in reactions of the typee+e−→e+e−π+π−π+π− in the single tag mode. The range of the four momentum squared of one of the virtual photons was 0.28 GeV2/c2≦Q2≦3.6 GeV2/c2, the average being 〈Q2〉=0.92 GeV2/c2; the other photon was quasi real. The reaction is mainly described by the channels γγ→ρ0ρ0 and γγ→4π (phase space), occuring with about equal probability. TheQ2-dependence of the cross section is in agreement with the ρ form factor.
Data read from graph.. Additional overall systematic error 25%.
Data read from graph.. Additional overall systematic error 25%.. The Q**2 approx 0 datum is deduced from the earlier TASSO paper, Brandelik et al, Phys. Lett. 97B(1980)448, (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1151> RED = 1151 </a>) on rho0 rho0 production.
p̄p total cross sections have been measured from 220 to 413 MeV/ c in small (⩽ 10 MeV/ c ) steps of momentum with statistics of ± 0.5 %. There is no evidence for structure in the cross section, and a limit of 8 mb MeV/ c 2 is set with 90% confidence on the strength of any narrow resonance down to 250 MeV/ c .
Data taken with long target.
Data taken with short target.
An absolute measurement of π0 photoproduction on the proton has been carried out in the threshold region (from 144.7 to 173 MeV) by use of tagged annihilation photons. The measured cross sections, differential in the recoiling-proton energy, are used to perform a multipole analysis which gives a value & &, in disagreement with low-energy-theorem predictions. Total cross sections and coefficients of the π0 angular distribution are presented.
No description provided.
The cross section for the production of π+π− or K+K− pairs in γγ interactions is measured for mππ between 1.7 and 3.5 GeV/c2 and for two intervals of γγ center-of-mass scattering angle. Results are compared with predictions of a QCD model.
Data read off graph.
Data read off graph.
The production of thef0 in two photon collisions, with the subsequent decayf0→π+π− has been observed in the CELLO detector at PETRA. Thef0 peak was found to lie on a dipion continuum and to be shifted downwards in mass by ≃50 MeV/c2. The ππ mass spectrum from 0.8 to 1.5 GeV/c2 was well fitted by the model of Mennessier using only a unitarised Born amplitude and helicity 2f0 amplitude. The previously observed mass shift and distortion of thef0 peak are explained by strong interference between the Born andf0 amplitudes. The only free parameter in the fit of the data to the model is the radiative widthΓγγ(f0). It was found that:Γγγ(f0)=2.5±0.1±0.5 keV where the first (second) quoted errors are statistical (systematic).
Data read from graph.
Data read from graph.