Date

Combination and interpretation of differential Higgs boson production cross sections in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-HIG-23-013, 2025.
Inspire Record 2913615 DOI 10.17182/hepdata.156816

Precision measurements of Higgs boson differential production cross sections are a key tool to probe the properties of the Higgs boson and test the standard model. New physics can affect both Higgs boson production and decay, leading to deviations from the distributions that are expected in the standard model. In this paper, combined measurements of differential spectra in a fiducial region matching the experimental selections are performed, based on analyses of four Higgs boson decay channels ($\gamma\gamma$, ZZ$^{(*)}$, WW$^{(*)}$, and $\tau\tau$) using proton-proton collision data recorded with the CMS detector at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. The differential measurements are extrapolated to the full phase space and combined to provide the differential spectra. A measurement of the total Higgs boson production cross section is also performed using the $\gamma\gamma$ and ZZ decay channels, with a result of 53.4$^{+2.9}_{-2.9}$ (stat)$^{+1.9}_{-1.8}$ (syst) pb, consistent with the standard model prediction of 55.6 $\pm$ 2.5 pb. The fiducial measurements are used to compute limits on Higgs boson couplings using the $\kappa$-framework and the SM effective field theory.

17 data tables

Observed best fit differential cross section for the $p_{T}^{H}$ observable

Observed best fit differential cross section for the $N_{jets}$ observable

Observed best fit differential cross section for the $p_{T}^{j1}$ (GeV) observable

More…

Energy-scaling behavior of intrinsic transverse momentum parameters in Drell-Yan simulation

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 111 (2025) 072003, 2025.
Inspire Record 2839223 DOI 10.17182/hepdata.154142

An analysis is presented based on models of the intrinsic transverse momentum (intrinsic $k_\mathrm{T}$) of partons in nucleons by studying the dilepton transverse momentum in Drell-Yan events. Using parameter tuning in event generators and existing data from fixed-target experiments and from hadron colliders, our investigation spans three orders of magnitude in center-of-mass energy and two orders of magnitude in dilepton invariant mass. The results show an energy-scaling behavior of the intrinsic $k_\mathrm{T}$ parameters, independent of the dilepton invariant mass at a given center-of-mass energy.

45 data tables

Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP5 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.

Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP4 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.

Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP3 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.

More…

ATLAS Run 2 searches for electroweak production of supersymmetric particles interpreted within the pMSSM

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 05 (2024) 106, 2024.
Inspire Record 2755168 DOI 10.17182/hepdata.149493

A summary of the constraints from searches performed by the ATLAS Collaboration for the electroweak production of charginos and neutralinos is presented. Results from eight separate ATLAS searches are considered, each using 140 fb$^{-1}$ of proton-proton data at a centre-of-mass energy of $\sqrt{s}$=13 TeV collected at the Large Hadron Collider during its second data-taking run. The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, where R-parity conservation is assumed and the lightest supersymmetric particle is assumed to be the lightest neutralino. Constraints from previous electroweak, flavour and dark matter related measurements are also considered. The results are presented in terms of constraints on supersymmetric particle masses and are compared with limits from simplified models. Also shown is the impact of ATLAS searches on parameters such as the dark matter relic density and the spin-dependent and spin-independent scattering cross-sections targeted by direct dark matter detection experiments. The Higgs boson and Z boson `funnel regions', where a low-mass neutralino would not oversaturate the dark matter relic abundance, are almost completely excluded by the considered constraints. Example spectra for non-excluded supersymmetric models with light charginos and neutralinos are also presented.

2 data tables

SLHA files and exclusion information (in CSV format) are available to download for the pMSSM models in this paper. Please refer to <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2020-15/inputs/ATLAS_EW_pMSSM_Run2.html">this web page</a> for download links along with a description of the contents.

SLHA files and exclusion information (in CSV format) are available to download for the pMSSM models in this paper. Please refer to <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2020-15/inputs/ATLAS_EW_pMSSM_Run2.html">this web page</a> for download links along with a description of the contents.


Common femtoscopic hadron-emission source in pp collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Eur.Phys.J.C 85 (2025) 198, 2025.
Inspire Record 2725934 DOI 10.17182/hepdata.152623

The femtoscopic study of pairs of identical pions is particularly suited to investigate the effective source function of particle emission, due to the resulting Bose-Einstein correlation signal. In small collision systems at the LHC, pp in particular, the majority of the pions are produced in resonance decays, which significantly affect the profile and size of the source. In this work, we explicitly model this effect in order to extract the primordial source in pp collisions at $\sqrt{s} = 13$ TeV from charged $\pi$-$\pi$ correlations measured by ALICE. We demonstrate that the assumption of a Gaussian primordial source is compatible with the data and that the effective source, resulting from modifications due to resonances, is approximately exponential, as found in previous measurements at the LHC. The universality of hadron emission in pp collisions is further investigated by applying the same methodology to characterize the primordial source of K-p pairs. The size of the primordial source is evaluated as a function of the transverse mass ($m_{\rm T}$) of the pairs, leading to the observation of a common scaling for both $\pi$-$\pi$ and K-p, suggesting a collective effect. Further, the present results are compatible with the $m_{\rm T}$ scaling of the p-p and p$-\Lambda$ primordial source measured by ALICE in high multiplicity pp collisions, providing compelling evidence for the presence of a common emission source for all hadrons in small collision systems at the LHC. This will allow the determination of the source function for any hadron--hadron pairs with high precision, granting access to the properties of the possible final-state interaction among pairs of less abundantly produced hadrons, such as strange or charmed particles.

29 data tables

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in HM pp collisions at $\sqrt{s_{\mathrm {NN}}}=13 $ TeV (1.2<$m_T$<1.4 GeV/$c^{2}$).

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in HM pp collisions at $\sqrt{s_{\mathrm {NN}}}=13 $ TeV (1.4<$m_T$<1.5 GeV/$c^{2}$).

K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in HM pp collisions at $\sqrt{s_{\mathrm {NN}}}=13 $ TeV (1.5<$m_T$<1.8 GeV/$c^{2}$).

More…

Constraining the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Lett.B 843 (2023) 137745, 2023.
Inspire Record 2175556 DOI 10.17182/hepdata.135471

Constraints on the Higgs boson self-coupling are set by combining double-Higgs boson analyses in the $b\bar{b}b\bar{b}$, $b\bar{b}\tau^+\tau^-$ and $b\bar{b} \gamma \gamma$ decay channels with single-Higgs boson analyses targeting the $\gamma \gamma$, $ZZ^*$, $WW^*$, $\tau^+ \tau^-$ and $b\bar{b}$ decay channels. The data used in these analyses were recorded by the ATLAS detector at the LHC in proton$-$proton collisions at $\sqrt{s}=13$ TeV and correspond to an integrated luminosity of 126$-$139 fb$^{-1}$. The combination of the double-Higgs analyses sets an upper limit of $\mu_{HH} < 2.4$ at 95% confidence level on the double-Higgs production cross-section normalised to its Standard Model prediction. Combining the single-Higgs and double-Higgs analyses, with the assumption that new physics affects only the Higgs boson self-coupling ($\lambda_{HHH}$), values outside the interval $-0.4< \kappa_{\lambda}=(\lambda_{HHH}/\lambda_{HHH}^{\textrm{SM}})< 6.3$ are excluded at 95% confidence level. The combined single-Higgs and double-Higgs analyses provide results with fewer assumptions, by adding in the fit more coupling modifiers introduced to account for the Higgs boson interactions with the other Standard Model particles. In this relaxed scenario, the constraint becomes $-1.4 < \kappa_{\lambda} < 6.1$ at 95% CL.

44 data tables

Observed and expected 95% CL upper limits on the signal strength for double-Higgs production from the bbbb, bb$\tau\tau$ and bb$\gamma\gamma$ decay channels, and their statistical combination. The value $m_H$ = 125.09 GeV is assumed when deriving the predicted SM cross-section. The expected limit and the corresponding error bands are derived assuming the absence of the HH process and with all nuisance parameters profiled to the observed data.

Observed and expected 95% CL exclusion limits on the production cross-sections of the combined ggF HH and VBF HH processes as a function of $\kappa_\lambda$, for the three double-Higgs search channels and their combination. The expected limits assume no HH production. The red line shows the theory prediction for the combined ggF HH and VBF HH cross-section as a function of $\kappa_\lambda$ where all parameters and couplings are set to their SM values except for $\kappa_\lambda$. The band surrounding the red cross-section lines indicate the theoretical uncertainty of the predicted cross-section.

Observed and expected 95% CL exclusion limits on the production cross-sections of the VBF HH process as a function of $\kappa_{2V}$, for the three double-Higgs search channels and their combination. The expected limits assume no VBF HH production. The red line shows the predicted VBF HH cross-section as a function of $\kappa_{2V}$. The bands surrounding the red cross-section lines indicate the theoretical uncertainty of the predicted cross-section. The uncertainty band is smaller than the width of the plotted line.

More…

Measurements of $q^2$ Moments of Inclusive $B \rightarrow X_c \ell^+ \nu_{\ell}$ Decays with Hadronic Tagging

The Belle collaboration van Tonder, R. ; Cao, L. ; Sutcliffe, W. ; et al.
Phys.Rev.D 104 (2021) 112011, 2021.
Inspire Record 1917200 DOI 10.17182/hepdata.138985

We present the measurement of the first to fourth order moments of the four-momentum transfer squared, $q^2$, of inclusive $B \rightarrow X_c \ell^+ \nu_{\ell}$ decays using the full Belle data set of 711 $\mathrm{fb}^{-1}$ of integrated luminosity at the $\Upsilon(4S)$ resonance where $\ell = e, \mu$. The determination of these moments and their systematic uncertainties open new pathways to determine the absolute value of the CKM matrix element $V_{cb}$ using a reduced set of matrix elements of the heavy quark expansion. In order to identify and reconstruct the $X_c$ system, we reconstruct one of the two $B$-mesons using machine learning techniques in fully hadronic decay modes. The moments are measured with progressively increasing threshold selections on $q^2$ starting with a lower value of 3.0 $\mathrm{GeV}^2$ in steps of 0.5 $\mathrm{GeV}^2$ up to a value of 10.0 $\mathrm{GeV}^2$. The measured moments are further unfolded, correcting for reconstruction and selection effects as well as QED final state radiation. We report the moments separately for electron and muon final states and observe no lepton flavor universality violating effects.

52 data tables

First $q^2$ moment in GeV$^2$ for the electron channel with lower $q^2$ thresholds ranging from $3.0$ GeV$^2$ to $10.0$ GeV$^2$ in steps of $0.5$ GeV$^2$.

Second $q^2$ moment in GeV$^4$ for the electron channel with lower $q^2$ thresholds ranging from $3.0$ GeV$^2$ to $10.0$ GeV$^2$ in steps of $0.5$ GeV$^2$.

Third $q^2$ moment in GeV$^6$ for the electron channel with lower $q^2$ thresholds ranging from $3.0$ GeV$^2$ to $10.0$ GeV$^2$ in steps of $0.5$ GeV$^2$.

More…

The exotic meson $\pi_1(1600)$ with $J^{PC} = 1^{-+}$ and its decay into $\rho(770)\pi$

The COMPASS collaboration Alexeev, M.G. ; Alexeev, G.D. ; Amoroso, A. ; et al.
Phys.Rev.D 105 (2022) 012005, 2022.
Inspire Record 1898933 DOI 10.17182/hepdata.114098

We study the spin-exotic $J^{PC} = 1^{-+}$ amplitude in single-diffractive dissociation of 190 GeV$/c$ pions into $\pi^-\pi^-\pi^+$ using a hydrogen target and confirm the $\pi_1(1600) \to \rho(770) \pi$ amplitude, which interferes with a nonresonant $1^{-+}$ amplitude. We demonstrate that conflicting conclusions from previous studies on these amplitudes can be attributed to different analysis models and different treatment of the dependence of the amplitudes on the squared four-momentum transfer and we thus reconcile their experimental findings. We study the nonresonant contributions to the $\pi^-\pi^-\pi^+$ final state using pseudo-data generated on the basis of a Deck model. Subjecting pseudo-data and real data to the same partial-wave analysis, we find good agreement concerning the spectral shape and its dependence on the squared four-momentum transfer for the $J^{PC} = 1^{-+}$ amplitude and also for amplitudes with other $J^{PC}$ quantum numbers. We investigate for the first time the amplitude of the $\pi^-\pi^+$ subsystem with $J^{PC} = 1^{--}$ in the $3\pi$ amplitude with $J^{PC} = 1^{-+}$ employing the novel freed-isobar analysis scheme. We reveal this $\pi^-\pi^+$ amplitude to be dominated by the $\rho(770)$ for both the $\pi_1(1600)$ and the nonresonant contribution. We determine the $\rho(770)$ resonance parameters within the three-pion final state. These findings largely confirm the underlying assumptions for the isobar model used in all previous partial-wave analyses addressing the $J^{PC} = 1^{-+}$ amplitude.

4 data tables

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the first $t^\prime$ bin from $0.100$ to $0.141\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 8(a). In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_0.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_0</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the second $t^\prime$ bin from $0.141$ to $0.194\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(a) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_1.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_1</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the third $t^\prime$ bin from $0.194$ to $0.326\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(b) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_2.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_2</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

More…

Direct observation of the dead-cone effect in QCD

The ALICE collaboration Acharya, S. ; Acharya, S. ; Adamova, D. ; et al.
Nature 605 (2022) 440-446, 2022.
Inspire Record 1867966 DOI 10.17182/hepdata.130725

In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD). These partons subsequently emit further partons in a process that can be described as a parton shower which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass $m_{\rm{Q}}$ and energy $E$, within a cone of angular size $m_{\rm{Q}}$/$E$ around the emitter. Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.

1 data table

The $R(\theta)$ variable for charm/inclusive emissions in three bins of $E_{Rad}$: 5-10, 10-20 and 20-35 GeV.


Measurement of $b$-hadron fractions in 13 TeV $pp$ collisions

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
Phys.Rev.D 100 (2019) 031102, 2019.
Inspire Record 1720859 DOI 10.17182/hepdata.141536

The production fractions of $\overline{B}_s^0$ and $\Lambda_b^0$ hadrons, normalized to the sum of $B^-$ and $\overline{B}^0$ fractions, are measured in 13 TeV pp collisions using data collected by the LHCb experiment, corresponding to an integrated luminosity of 1.67/fb. These ratios, averaged over the $b$-hadron transverse momenta from 4 to 25 GeV and pseudorapidity from 2 to 5, are $0.122 \pm 0.006$ for $\overline{B}_s^0$, and $0.259 \pm 0.018$ for $\Lambda_b^0$, where the uncertainties arise from both statistical and systematic sources. The $\Lambda_b^0$ ratio depends strongly on transverse momentum, while the $\overline{B}_s^0$ ratio shows a mild dependence. Neither ratio shows variations with pseudorapidity. The measurements are made using semileptonic decays to minimize theoretical uncertainties. In addition, the ratio of $D^+$ to $D^0$ mesons produced in the sum of $\overline{B}^0$ and $B^-$ semileptonic decays is determined as $0.359\pm0.006\pm 0.009$, where the uncertainties are statistical and systematic.

1 data table

Values of $f_s/(f_u+f_d)$ and $f_{\mathit{\Lambda}_b^0}/(f_u+f_d)$ in each $p_\mathrm{T}(H_b)$ bin.


Light isovector resonances in $\pi^- p \to \pi^-\pi^-\pi^+ p$ at 190 GeV/${\it c}$

The COMPASS collaboration Aghasyan, M. ; Alexeev, M.G. ; Alexeev, G.D. ; et al.
Phys.Rev.D 98 (2018) 092003, 2018.
Inspire Record 1655631 DOI 10.17182/hepdata.82958

We have performed the most comprehensive resonance-model fit of $\pi^-\pi^-\pi^+$ states using the results of our previously published partial-wave analysis (PWA) of a large data set of diffractive-dissociation events from the reaction $\pi^- + p \to \pi^-\pi^-\pi^+ + p_\text{recoil}$ with a 190 GeV/$c$ pion beam. The PWA results, which were obtained in 100 bins of three-pion mass, $0.5 &lt; m_{3\pi} &lt; 2.5$ GeV/$c^2$, and simultaneously in 11 bins of the reduced four-momentum transfer squared, $0.1 &lt; t' &lt; 1.0$ $($GeV$/c)^2$, are subjected to a resonance-model fit using Breit-Wigner amplitudes to simultaneously describe a subset of 14 selected waves using 11 isovector light-meson states with $J^{PC} = 0^{-+}$, $1^{++}$, $2^{++}$, $2^{-+}$, $4^{++}$, and spin-exotic $1^{-+}$ quantum numbers. The model contains the well-known resonances $\pi(1800)$, $a_1(1260)$, $a_2(1320)$, $\pi_2(1670)$, $\pi_2(1880)$, and $a_4(2040)$. In addition, it includes the disputed $\pi_1(1600)$, the excited states $a_1(1640)$, $a_2(1700)$, and $\pi_2(2005)$, as well as the resonancelike $a_1(1420)$. We measure the resonance parameters mass and width of these objects by combining the information from the PWA results obtained in the 11 $t'$ bins. We extract the relative branching fractions of the $\rho(770) \pi$ and $f_2(1270) \pi$ decays of $a_2(1320)$ and $a_4(2040)$, where the former one is measured for the first time. In a novel approach, we extract the $t'$ dependence of the intensity of the resonances and of their phases. The $t'$ dependence of the intensities of most resonances differs distinctly from the $t'$ dependence of the nonresonant components. For the first time, we determine the $t'$ dependence of the phases of the production amplitudes and confirm that the production mechanism of the Pomeron exchange is common to all resonances.

2 data tables

Real and imaginary parts of the normalized transition amplitudes $\mathcal{T}_a$ of the 14 selected partial waves in the 1100 $(m_{3\pi}, t')$ cells (see Eq. (12) in the paper). The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the transition amplitudes in the column headers. The $m_{3\pi}$ values that are given in the first column correspond to the bin centers. Each of the 100 $m_{3\pi}$ bins is 20 MeV/$c^2$ wide. Since the 11 $t'$ bins are non-equidistant, the lower and upper bounds of each $t'$ bin are given in the column headers. The transition amplitudes define the spin-density matrix elements $\varrho_{ab}$ for waves $a$ and $b$ according to Eq. (18). The spin-density matrix enters the resonance-model fit via Eqs. (33) and (34). The transition amplitudes are normalized via Eqs. (9), (16), and (17) such that the partial-wave intensities $\varrho_{aa} = |\mathcal{T}_a|^2$ are given in units of acceptance-corrected number of events. The relative phase $\Delta\phi_{ab}$ between two waves $a$ and $b$ is given by $\arg(\varrho_{ab}) = \arg(\mathcal{T}_a) - \arg(\mathcal{T}_b)$. Note that only relative phases are well-defined. The phase of the $1^{++}0^+ \rho(770) \pi S$ wave was set to $0^\circ$ so that the corresponding transition amplitudes are real-valued. In the PWA model, some waves are excluded in the region of low $m_{3\pi}$ (see paper and [Phys. Rev. D 95, 032004 (2017)] for a detailed description of the PWA model). For these waves, the transition amplitudes are set to zero. The tables with the covariance matrices of the transition amplitudes for all 1100 $(m_{3\pi}, t')$ cells can be downloaded via the 'Additional Resources' for this table.

Decay phase-space volume $I_{aa}$ for the 14 selected partial waves as a function of $m_{3\pi}$, normalized such that $I_{aa}(m_{3\pi} = 2.5~\text{GeV}/c^2) = 1$. The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the decay phase-space volume in the column headers. The labels are identical to the ones used in the column headers of the table of the transition amplitudes. $I_{aa}$ is calculated using Monte Carlo integration techniques for fixed $m_{3\pi}$ values, which are given in the first column, in the range from 0.5 to 2.5 GeV/$c^2$ in steps of 10 MeV/$c^2$. The statistical uncertainties given for $I_{aa}$ are due to the finite number of Monte Carlo events. $I_{aa}(m_{3\pi})$ is defined in Eq. (6) in the paper and appears in the resonance model in Eqs. (19) and (20).