Measurement of the photon structure function at high Q**2 at LEP

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 483 (2000) 373-386, 2000.
Inspire Record 525764 DOI 10.17182/hepdata.49964

The structure functions of real and virtual photons are derived from cross section measurements of the reaction e^+e^ -> e^+e^- + hadrons at LEP. The reaction is studied at \sqrt{s} ~ 91 GeV with the L3 detector. One of the final state electrons is detected at a large angle relative to the beam direction, leading to Q^2 values between 40 GeV^2 and 500 GeV^2. The other final state electron is either undetected or it is detected at a four-momentum transfer squared P^2 between 1 GeV^2 and 8 GeV^2. These measurements are compared with predictions of the Quark Parton Model and other QCD based models.

4 data tables match query

Measured values of F2 for the single-tag data as a function of X for the full Q**2 range.

Measured values of F2 for the single-tag data as a function of Q**2 for different X ranges.

The effective F2 measured in double-tag events as a function of X.

More…

The Q**2 evolution of the hadronic photon structure function F2(gamma) at LEP.

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 447 (1999) 147-156, 1999.
Inspire Record 479052 DOI 10.17182/hepdata.49323

New measurements at a centre-of-mass energy s ≃183 GeV of the hadronic photon structure function F γ 2 ( x ) in the Q 2 interval, 9 GeV 2 ≤ Q 2 ≤30 GeV 2 , are presented. The data, collected in 1997 with the L3 detector, correspond to an integrated luminosity of 51.9 pb −1 . Combining with the data taken at a centre-of-mass energy of 91 GeV, the evolution of F γ 2 with Q 2 is measured in the Q 2 range from 1.2 GeV 2 to 30 GeV 2 . F γ 2 shows a linear growth with ln Q 2 ; the value of the slope α −1 d F γ 2 ( Q 2 )/dln Q 2 is measured in two x bins from 0.01 to 0.2 and is somewhat higher than predicted.

1 data table match query

Measured values of F2/ALPHA as a function of x. The second systematic error (DSYS) is that due to the model dependence and is the difference between the results obtained with PHOJET and TWOGAM. The full systematic error is the quadrature sum of the two systematic errors.


Photon structure functions and azimuthal correlations of lepton pairs in tagged gamma gamma collisions.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 438 (1998) 363-378, 1998.
Inspire Record 470997 DOI 10.17182/hepdata.49546

The reactions e + e − → e + e − e + e − and e + e − → e + e − μ + μ − , in a single tag configuration, are studied at LEP with the L3 detector. The data set corresponds to an integrated luminosity of 93.7 pb −1 at s =91 GeV. Differential cross sections are measured for 1.4 GeV 2 ≤Q 2 ≤7.6 GeV 2 . The leptonic photon structure function F γ 2 and azimuthal correlations are measured for e + e − → e + e − μ + μ − . The related structure functions F γ A and F γ B , which originate from interference terms of the scattering amplitudes, are determined for the first time.

1 data table match query

The systematic and statistical errors added in quadrature. F2(NAME=FA) AND F2(NAME=FB) are related structure functions FA and FB, which originate from inerference terms of the scattering amplitudes. See text for exact definition and details.


Study of the hadronic photon structure function F2(gamma) at LEP.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 436 (1998) 403-416, 1998.
Inspire Record 472644 DOI 10.17182/hepdata.49392

The hadronic photon structure function F γ 2 is studied in the reaction e + e − →e + e − hadrons at LEP with the L3 detector. The data, collected from 1991 to 1995 at a centre-of-mass energy s ≃91 GeV, correspond to an integrated luminosity of 140 pb −1 . The photon structure function F γ 2 is measured in the Q 2 interval 1.2 GeV 2 ≤ Q 2 ≤9.0 GeV 2 and the x interval 0.002< x <0.2. F γ 2 shows a linear growth with ln Q 2 . The value of the slope α −1 d F γ 2 ( Q 2 )/dln Q 2 is measured to be 0.079±0.011±0.009.

3 data tables match query

No description provided.

No description provided.

No description provided.


Measurement of the Q**2 evolution of the photon structure function F2(gamma).

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 411 (1997) 387-401, 1997.
Inspire Record 446673 DOI 10.17182/hepdata.47450

New measurements are presented of the photon structure function F_2^gamma(Q) at four values of Q^2 between 9 and 59 GeV/c^2 based on data collected with the OPAL detector at centre-of-mass energies of 161-172 GeV, with a total integrated luminosity of 18.1 pb^-1. The evolution of F_2^gamma with Q^2 in bins of x is determined in the Q^2 range from 1.86 to 135 GeV/c^2 using data taken at centre-of-mass energies of 91 GeV and 161-172 GeV. F_2^gamma is observed to increase with Q^2 with a slope of 1/alpha_em dF_2^gamma/dln(Q^2) = 0.10 +0.05 -0.03 measured in the range 0.1 < x < 0.6.

5 data tables match query

Measured values of F2 for the SW sample.

Measured values of F2 for the FD sample.

F2 for the full X range (0.1 to 0.6) as a function of Q**2. The full SW andFD sample points are tabulated for completeness but are not in the plot or fits . The first three points are previous OPAL data at sqrt(s) = 91 GeV (ZP C74(1997)33).

More…

Measurement of the QED longitudinal structure function of the photon using azimuthal correlations at LEP.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 74 (1997) 49-55, 1997.
Inspire Record 426207 DOI 10.17182/hepdata.47704

We have studied azimuthal correlations in singly-tagged e+e− → e+e−μ+μ− events at an average Q2 of 5.2 GeV2. The data were taken with the OPAL detector at LEP at e+e− centre-of-mass energies close to the Z0 mass, with an integrated luminosity of approximately 100 pb−1. The azimuthal correlations are used to extract the ratio $F_{B}^{αmma}/F_{2}^{αmma}$ of the QED structure functions $F_{B}^{αmma}(x,Q^{2})$ and $F_{2}^{αmma}(x,Q^{2})$ of the photon. In leading order and neglecting the muon mass $F_{B}^{αmma}$ is expected to be identical to the longitudinal structure function $F_{L}^{αmma}$. The measurement of $F_{B}^{αmma}/F_{2}^{αmma}$ is found to be significantly different from zero and to be consistent with the QED prediction.

1 data table match query

No description provided.


Analysis of hadronic final states and the photon structure function F2(gamma) in deep inelastic electron photon scattering at LEP.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 74 (1997) 33-48, 1997.
Inspire Record 426209 DOI 10.17182/hepdata.47770

Deep inelastic electron-photon scattering is studied in the Q2 ranges from 6 to 30 GeV2 and from 60 to 400 GeV2 using the full sample of LEP data taken with the OPAL detector at centre-of-mass energies close to the Z0 mass, with an integrated luminosity of 156.4 pb−1. Energy flow distributions and other properties of the measured hadronic final state are compared with the predictions of Monte Carlo models, including HERWIG and PYTHIA. Sizeable differences are found between the data and the models, especially at low values of the scaling variable x. New measurements are presented of the photon structure function $F_2^{αmma }(x,Q^2)$, allowing for the first time for uncertainties in the description of the final state by different Monte Carlo models. The differences between the data and the models contribute significantly to the systematic errors on $F_2^{αmma }$. The slope ${⤪ d}(F_2^{αmma }/←pha )/{⤪ d ln} Q^2$ is measured to be $0.13_{-0.04}^{+0.06}$.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the photon structure function F2(gamma) at low x.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 412 (1997) 225-234, 1997.
Inspire Record 447187 DOI 10.17182/hepdata.49560

Deep inelastic electron-photon scattering is studied using e+e- data collected by the OPAL detector at centre-of-mass energies sqrt{s_ee} ~ M_{Z^0}. The photon structure function F_2^gamma(x,Q^2) is explored in a Q^2 range of 1.1 to 6.6 GeV/c^2 at lower x values than ever before. To probe this kinematic region events are selected with a beam electron scattered into one of the OPAL luminosity calorimeters at scattering angles between 27 and 55 mrad. A measurement is presented of the photon structure function F_2^gamma(x,Q^2) at <Q^2> = 1.86 GeV^2 and 3.76 GeV^2 in five logarithmic x bins from 0.0025 to 0.2.

2 data tables match query

Measurement of the hadron photon structure function. Systematic errors do not contain any effects caused by the four momentum of the quasi-real photon being non zero.

Measurement of the hadron photon structure function. Systematic errors do not contain any effects caused by the four momentum of the quasi-real photon being non zero.


Measurement of the low-x behavior of the photon structure function F2(gamma).

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Ainsley, C. ; et al.
Eur.Phys.J.C 18 (2000) 15-39, 2000.
Inspire Record 529899 DOI 10.17182/hepdata.49907

The photon structure function F2-gamma(x,Q**2) has been measured using data taken by the OPAL detector at centre-of-mass energies of 91Gev, 183Gev and 189Gev, in Q**2 ranges of 1.5 to 30.0 GeV**2 (LEP1), and 7.0 to 30.0 GeV**2 (LEP2), probing lower values of x than ever before. Since previous OPAL analyses, new Monte Carlo models and new methods, such as multi-variable unfolding, have been introduced, reducing significantly the model dependent systematic errors in the measurement.

12 data tables match query

Results of F2/ALPHAE for the LEP1 data using the SW for Q**2 = 1.9 GeV**2.

Results of F2/ALPHAE for the LEP1 data using the SW for Q**2 = 3.7 GeV**2.

Results of F2/ALPHAE for the LEP1 data using the FD for Q**2 = 8.9 GeV**2.

More…

Measurement of the hadronic photon structure function F2(gamma) at LEP2.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 533 (2002) 207-222, 2002.
Inspire Record 583115 DOI 10.17182/hepdata.49744

The hadronic structure of the photon F2gamma is measured as a function of Bjorken x and of the photon virtuality Q2 using deep-inelastic scattering data taken by the OPAL detector at LEP at e+e- centre-of-mass energies from 183 to 209 GeV. Previous OPAL measurements of the x dependence of F2gamma are extended to an average Q2 of <Q2>=780GeV2 using data in the kinematic range 0.15 < x < 0.98. The Q2 evolution of F2gamma is studied for 12.1 < <Q2> < 780GeV2 using three ranges of x. As predicted by QCD, the data show positive scaling violations in F2gamma for the central x region 0.10-0.60. Several parameterisations of F2gamma are in qualitative agreement with the measurements whereas the quark-parton model prediction fails to describe the data.

13 data tables match query

F2 and DSIG/DX for the EE sample in the high Q**2 region as a function of X.

Statistical correlations between the bins in the preceding table.

The measured value of F2 and DSIG/DX for the SW data sample in the Q**2 range 9 to 15 GeV**2.

More…