Inclusive production of ifπ ± , K ± and p has been studied near charm threshold for c.m. energies between 3.6 and 5.2 GeV. Differential and scaling cross sections together with particle multiplicities have been determinated. By comparing data below and above charm threshold the charm contribution to if π ± and K ± production has been extracted. A comparison has been made between inclusice p production and inelastic electron-proton scattering. To study differences between three-gluon annihilation and two-quark production of the spectra from J/ decay and from non-resonant production at 3.6 GeV has been compared.
Measurements ofR, sphericity and thrust are presented for c.m. energies between 12 and 31.6 GeV. A possible contribution of at\(\bar t\) continuum can be ruled out for c.m. energies between 16 and 31 GeV.
We present an analysis ofρ0ρ0 production by two photons in theρ0ρ0 invariant mass range from 1.2 to 2.0 GeV. From a study of the angular correlations in the process γγ→ρ0ρ0→π−π+π− we exclude a dominant contribution fromJP=0− or 2− states. The data indicate sizeable contributions fromJP=0+ for four pion massesM4π<1.7 GeV and fromJP=2+ forM4π>1.7 GeV. The data are also well described by a model with isotropic production and uncorrelated isotropic decay of theρ0,s. The cross section stays high below the nominalρ0ρ0 threshold, i.e.M4π<1.5 GeV. The matrix element forρ0ρ0 production is found to decrease steeply with increasingM4π. Upper limits for the couplings of the ι(1440) and Θ(1640) to γγ andρ0ρ0 are given:Γ(ι→γγ)·B(ι→ρ0ρ0)<1.0 keV andΓ(Θ→γγ)
The large amount of data accumulated by the TASSO detector at 35 GeV c.m. energy has been compared with the predictions of the latest generation of perturbative QCD+fragmentation models. By adjustment of the arbitrary parameters of these models, a very good description of the global properties of hadronic events was obtained. No one model gave the best description of all features of the data, each model being better than the others for some observables and worse in other quantities. We interpret these results in terms of the underlying QCD and hadronisation schemes. The trends of the data across the energy range 12.0≦W≦41.5 GeV are generally well reproduced by the models with the parameters optimised at 35 GeV.
Results onK0 and Λ production ine+e− annihilation at c.m. energies of 14, 22 and 34 GeV are presented. The shape of theK0 and Λ differential cross sections are very similar to each other and to those of π±,K± and\(p(\bar p)\). Scaling violations are observed forK0 production. We obtain a value for the probability to produce strange quark-antiquark pairs relative to that to produce up or down quark-antiquark pairs of 0.35±0.02±0.05. The value ofRh=σ(e+e-→hX)/σµµ is shown to rise steadily with c.m. energy for all particle species. At 34 GeV we find 1.48±0.05K0 and 0.31±0.03 Λ per event. We have searched for possible Λ polarization. The production ofK0's and Λ's in jets is examined as a function ofpT2 and rapidity and compared to that of all charged particles; the yields in two and three jets are also investigated. Results are presented from events with two baryons\((\Lambda ,\bar \Lambda ,por\bar p)\) observed.
The full TASSO data have been used to study the inclusive production of strange mesons ine+e− annihilations. Differential and total cross sections have been measured in the centre of mass energy range 14 to 44 GeV forK0,\(\bar K^0\) and 34.5 to 44 GeV forK*± (892). We have investigated the strange meson production properties in jets by studying the rapidity andpt2 distributions as well as the evolution of the multiplicities as a function of the event sphericity. We find no evidence that the strange meson yields increase with increasing sphericity faster than the total charged multiplicity.
The reactione+e−→e+e− A2 (1320) has been observed by detecting the decayA2→π+,π-π0. The two-photon width of theA2 has been measured to be Г(A2→γγ)=(0.09±0.27 (stat)±0.16 (syst)) keV. The cross section σ(γγ→π+,π-π0 has been determined outside theA2 resonance region.
Data on jet masses, resulting from the decomposition ofe+e− hadronic final states into two hemispheres, are presented at centre of mass energies between 12 and 43.5 GeV. Comparisons are made with bareO(αs2) QCD predictions as well as with QCD based fragmentation models. Values for αs and\(\Lambda _{\overline {MS} } \) are determined, both with and without hadronization effects included. Upper and lower limits for\(\Lambda _{\overline {MS} } \) independent of fragmentation models have been determined to be 0.480±0.025 GeV and 0.047±0.007 GeV respectively.
The production of strange baryons ine+e− annihilation has been studied at centre of mass energies of 34.8 GeV and 42.1 GeV, using the TASSO detector at DESY. Inclusive cross-sections have been obtained forΛ0 andΞ− production and an upper limit has been placed upon the production rate of Σ*±(1385). We measure theΛ0 multiplicity per event to be\(\begin{gathered}\hfill \\0.218_{ - 0.011}^{ + 0.011}\pm 0.021 \hfill \\ \end{gathered} \) and\(0.256_{ - 0.029}^{ + 0.030}\pm 0.025\) at\(\sqrt s=34.8\) and 42.1 GeV respectively. The Ξ− multiplicity per event is found to be\(0.014_{ - 0.003}^{ + 0.003}\pm 0.004\) at\(\sqrt s=34.8 GeV\). An investigation has been made of the extent to whichΛ0 are produced in pairs. TheΛ0 cross-section has been studied as a function of event sphericity.
We report on a study of inclusive production ofD*± mesons ine+e− annihilation at c.m. energies between 28 and 46.8 GeV using the TASSO detector at the PETRA storage ring. A hardD*± energy spectrum is measured with a maximum nearED*±≃0.6Ebeam. The measured cross section ratio\((\sigma _{D^{* + } }+ \sigma _{D^{* - } } )/\sigma _{\mu \mu }= 1.28 \pm 0.09 \pm 0.18\) indicates thatD* production accounts for a large fraction of the observed charm production. Two complementary methods have been used to determine the forward-backward asymmetry of charm pair production due to electroweak interference. Combining both measurements the product of the axial vector couplings of the electron and the charm quark to the weak neutral current was determined to begAegAc=−(0.276±0.073), in agreement with the standard model prediction of −0.25. Using a sample of reconstructedD*± mesons, the relative strength of the strong interaction coupling of thec quark compared to that of an average of all flavours is measured as αs(c)/αs(all)=0.91±0.38±0.15, consistent with the coupling constant being flavour independent. An update of ourD0 lifetime measurement is presented, based on a considerable increase in statistics, the final result being\(\tau _{D^0= } (4.8 \pm _{0.9 - 0.7}^{1.0 + 0.5} )10^{ - 13} s\).