Inclusive production cross sections of charged pions on carbon, copper and bismuth by neutrons in the energy range of 300–580 MeV have been measured from 54° to 164°. The invariant cross sections can be expressed by Full-size image (<1 K) for the high-energy part of the pion spectra. The slope parameter exhibits a systematic variation with neutron energy and emission angle for the three targets. The dependence of the pion production on the target mass number varies strongly with pion energy and emission angle. The production cross sections are compared with the model of quasi-two-body scaling, the moving-source model and with intranuclear cascade calculations.
No description provided.
The reactions π+p→π+(π+π+π-π-)p andpp→p(π+π+π-π-)p, where the (π+ π+ π- π-) system is centrally produced have been studied at 85 GeV/c. The π+π+π-π- mass spectrum shows evidence for thef1 (1285) meson with a mass of 1278±2 MeV and width 41±12 MeV which decays mainly through ρ0(770)π+π-. Thef1(1285) is also observed in the ηπ+π- channel. There is no significant evidence for ηππ or 4π decay modes of thef1(1420). The ρ0ρ0 production is found to be small. A Dalitz plot analysis of the 3π system shows evidence fora2 (1320) production and for a large contribution of theJPC=1++ ρπ wave.
No description provided.
No description provided.
No description provided.
The K + K − and K S 0 K S 0 systems centrally produced in the reaction pp→p f K K p s have been studied at 300 GeV/ c incident momentum. Both the K + K − and the K S 0 K S 0 mass spectra show large resonant production. For the first time in hadron collisions, clear evidence is found for the θ f 2 (1720) with parameters m =1713±10 MeV, Γ =181±30 MeV for the K + K − decay mode and m =1706±10 MeV, Γ =104±30 MeV for the K S 0 K S 0 decay mode. A spin analysis of the K + K − spectrum shows that for the θ f 2 (1720) J P =2 + is strongly favoured while 0 + and 1 − are excluded.
Density matrix elements contributing in the fits of angular distributions in the F2PRIME(1525) region.
Density matrix elements contributing in the fits of angular distributions in the F2(1720) region.
The reaction pp→p f ( π + π − π + π − )p s , where the π + π − π + π − system is centrally produced, has been studied at 300 GeV/ c in an experiment designed to search for gluonic states. The π + π − π + π − mass spectrum shows evidence for the f 1 (1285) with a mass of 1281±1 MeV and a width of 31±5 MeV. In addition there is evidence for two new enhancements at masses of 1449±4 and 1901±13 MeV with widths of 78±18 and 312±61 MeV respectively. An analysis of the state at 1.45 GeV indicates that it is not a π + π − π + π − decay mode of the f 1 (1420) or ι η(1440) .
No description provided.
No description provided.
No description provided.
The reactionpp→pf(K+K-π+π-)ps, where theK+K− π+π- system is centrally produced, has been studied at 300 GeV/c. TheK*0\(K^{*0} \bar K^{*0} \) final state has been observed and the cross sections for its central production are found to be the same at 300 and 85 GeV/c. TheK*0\(K^{*0} \bar K^{*0} \) final state appears to be produced as a non-resonant threshold enhancement.
No description provided.
Cross sections for centrally produced vector-vector final states with mass greater than the phi-phi production threshold.
The NA24 experiment at CERN investigated inclusive γγ, π0π0, and γπ0 final states in the mass range between 4 and 9 GeV/c2 produced in π−p, π+p, and pp reactions at a c.m.-system energy s=23.7 GeV. The π0π0 cross sections agree well with expectations of the quark-parton model. For γπ0 production in π−p and pp reactions, a clear signal is observed and cross sections are shown. The production of γγ events was observed with a statistical significance of 2.9σ in π−p reactions. The cross section is in agreement with a higher-order QCD prediction.
Cross sections are averaged over the transverse momentum differences up to a value which is 1.10 GeV for all points except the first two which are 0.5 and 0.75 GeV respectively.
No description provided.
Maximum accepted transverse momentum difference of pi0 pair is 1 GeV. Inclusive cross section integrated over the total geometrical acceptance of the detector.
Total and differential cross sections for νμe→νμe and ν¯μe→ν¯μe are measured. Values for the model-independent neutral-current couplings of the electron are found to be gV=−0.107±0.035(stat)±0.028(syst) and gA=−0.514±0.023(stat)±0.028(syst). The electroweak mixing parameter sin2θW is determined to be 0.195±0.018(stat)±0.013(syst). Limits are set for the charge radius and magnetic moment of the neutrino as (〈r2〉)<0.24×10−32 cm2 and fμ<0.85×10−9 Bohr magnetons, respectively.
No description provided.
No description provided.
No description provided.
Hadronic decays of Z 0 bosons are studied in the Delphi detector. Global event variables and singel particles inclusive distributions are compared with QCD-based predictions. The mean charged multiplicity is found to be 20.6±1.0 (stat+syst). The mean values of the sphericity, aplanarity, thrust, minor value, p in T and p out T are compared with values found at lower energy e + e − colliders.
Corrected Sphericity distribution. Statistical errors only.
Corrected Aplanarity distribution. Statistical errors only.
Corrected Q3-Q2 distribution. Statistical errors only.
A measurement of the cross section for e + e - → hadrons using 11 000 hadronic decays of the Z boson at ten different center-of-mass energies is presented. A three-parameter fit gives the following values for the Z mass M z , the total width Γ z , the product of the electronic and hadronic partial widths Γ e Γ h , and the unfolded pole cross section σ 0 : M Z =91.171±0.030(stat)±0.030 (beam) GeV, Γ Z =2.511±0.065 GeV, Γ e Γ h =0.148±0.006 (stat.)±0.004 (syst.) GeV 2 , σ 0 =41.6±0.7(stat.)±1.1 (syst.) nb,
No description provided.
Measurements are presented of the cross section ratios R ℓ = σ ℓ ( e + e − →ℓ + ℓ − ) σ h ( e + e − →hadrons) for ℓ=e, μ and τ using data taken from a scan around the Z 0 . The results are R e =(5.09± o .32±0.18)%, R μ =(0.46±0.35±0.17)% and R τ =(4.72±0.38±0.29)% where, for the ratio R e , the t -channel contribution has been subtracted. These results are consistent with the hypothesis of lepton universality and test this hypothesis at the energy scale s ∼8300 GeV 2 . The absolute cross sections σ ℓ (e + e − →ℓ + ℓ − ) have also been measured. From the cross sections the leptonic partial widths Γ e =(83.2±3.0±2.4) MeV, (Γ e Γ μ ) 1 2 =(84.6±3.0±2.4) MeV and (Γ e Γ τ ) 1 2 =(82.6±3.3±3.2) MeV have been extracted. Assuming lepton universality the ratio Γ ℓ Γ h =(4.89±0.20±0.12) × 10 −2 w was obtained, together with Γ ℓ =(83.6±1.8±2.2) MeV. The number of light neutrino species is determined to be N v =3.12±0.24±0.25. Al the data are consistent with the predictions of the standard model.
E+ E- final state is t-channel subtracted.
No t-channel subtraction. Statistical errors only.
Statistical errors only.