The production of muons from heavy flavour decays is measured at forward rapidity in proton-proton collisions at $\sqrt{s} = 7$ TeV collected with the ALICE experiment at the LHC. The analysis is carried out on a data sample corresponding to an integrated luminosity $L_{\rm int} = 16.5$ nb$^{-1}$. The transverse momentum and rapidity differential production cross sections of muons from heavy flavour decays are measured in the rapidity range 2.5 < y < 4, over the transverse momentum range 2 < $p_{\rm T}$ < 12 GeV/$c$. The results are compared to predictions based on perturbative QCD calculations.
pT-differential production cross section of muons from heavy flavour decays, in the rapidity range 2.5<y<4.
y-differential production cross section of muons from heavy flavour decays, in the range 2<pT<12 GeV/C.
pT-differential production cross section of muons from heavy flavour decays, in the rapidity range 2.5<y<2.8.
We present measurements of Underlying Event observables in pp collisions at $\sqrt{s}$ = 0.9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum $p_{\rm T, LT}$ in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different $p_{\rm T}$ thresholds: 0.15, 0.5 and 1.0 GeV/$c$. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track $p){\rm T}$ threshold considered. Data are compared to Pythia 6.4, Pythia 8.1 and Phojet. On average, all models considered underestimate the multiplicity and summed $p_{\rm T}$ in the Transverse region by about 10-30%.
Number density as a function of the leading charged-particle PT at a centre-mass-energy of 900 GeV for events having charged-particle PT > 0.15 GeV. The data is shown for the three azimuthal regions.
Number density as a function of the leading charged-particle PT at a centre-mass-energy of 7000 GeV for events having charged-particle PT > 0.15 GeV. The data is shown for the three azimuthal regions.
Number density as a function of the leading charged-particle PT at a centre-mass-energy of 900 GeV for events having charged-particle PT > 0.5 GeV. The data is shown for the three azimuthal regions.
We have studied J/psi production in pp collisions at $\sqrt{s}=7$ TeV at the LHC through its muon pair decay. The polar and azimuthal angle distributions of the decay muons were measured, and results on the J/$\psi$ polarization parameters $\lambda_{\theta}$ and $\lambda_\phi$ were obtained. The study was performed in the kinematic region 2.5<y<4, 2<$p_{\rm T}$<8 GeV/$c$, in the helicity and Collins-Soper reference frames. In both frames, the polarization parameters are compatible with zero, within uncertainties.
$\lambda_\theta$ as a function of $p_{\rm T}$ for inclusive J/$\psi$, measured in the helicity reference frame.
$\lambda_\phi$ as a function of $p_{\rm T}$ for inclusive J/$\psi$, measured in the helicity reference frame.
$\lambda_\theta$ as a function of $p_{\rm T}$ for inclusive J/$\psi$, measured in the Collins-Soper reference frame.
The centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV is presented. The charged-particle density normalized per participating nucleon pair increases by about a factor 2 from peripheral (70-80%) to central (0-5%) collisions. The centrality dependence is found to be similar to that observed at lower collision energies. The data are compared with models based on different mechanisms for particle production in nuclear collisions.
The charged particle multiplicity density measurements for the nine centrality classes. Also given are the mean values of NPART, the number of participating nucleon pairs calulcated fromthe Glauber model. The errors shown are the systematic errors, with the statistical errors being small.
The dependence of the charged particle multiplicity density on the number of participants in the collisions.