We present a measurement of the cross section for W-boson production in association with jets in pbarp collisions at sqrt(s)=1.96$ TeV. The analysis uses a data sample corresponding to an integrated luminosity of 320 pb^-1 collected with the CDF II detector. W bosons are identified in their electron decay channel and jets are reconstructed using a cone algorithm. For each W+>= n-jet sample ($n= 1 - 4$) we measure sigma(ppbar =>W+>=n$-jet)x BR(W => e nu) with respect to the transverse energy E_T of the n^th-highest E_T jet above 20 GeV, for a restricted W => e nu decay phase space. The cross sections, corrected for all detector effects, can be directly compared to particle level W+ jet(s) predictions. We present here comparisons to leading order and next-to-leading order predictions.
Measured ET differential cross section of the 1st jet in >= 1 JET plus W < E NU > events.
Measured ET differential cross section of the 2nd jet in >= 2 JET plus W < E NU > events.
Measured ET differential cross section of the 3rd jet in >= 3 JET plus W < E NU > events.
We present the first model-independent measurement of the helicity of $W$ bosons produced in top quark decays, based on a 1 fb$^{-1}$ sample of candidate $t\bar{t}$ events in the dilepton and lepton plus jets channels collected by the D0 detector at the Fermilab Tevatron $p\bar{p}$ Collider. We reconstruct the angle $\theta^*$ between the momenta of the down-type fermion and the top quark in the $W$ boson rest frame for each top quark decay. A fit of the resulting \costheta distribution finds that the fraction of longitudinal $W$ bosons $f_0 = 0.425 \pm 0.166 \hbox{(stat.)} \pm 0.102 \hbox{(syst.)}$ and the fraction of right-handed $W$ bosons $f_+ = 0.119 \pm 0.090 \hbox{(stat.)} \pm 0.053 \hbox{(syst.)}$, which is consistent at the 30% C.L. with the standard model.
COS(THETA*) distribution for leptonic W decay in lepton+jets events.. Data are read from plots and errors are statistcial (sqrt(N)).
COS(THETA*) distribution for hadronic W decay in lepton+jets events.. Data are read from plots and errors are statistcial (sqrt(N)).
COS(THETA*) distribution for W decay in dilepton events.. Data are read from plots and errors are statistcial (sqrt(N)).
We present the first measurement of the production cross section of a W boson with a single charm quark (c) in p-pbar collisions at sqrt(s)=1.96 TeV, using soft muon tagging of c jets. In a data sample of ~1.8 fb-1, recorded with the CDF II detector at the Fermilab Tevatron, we select events with W+1 or 2 jets. We use the charge correlation between the W and the muon from the semileptonic decay of a charm hadron to extract the Wc signal. We measure sigma_{Wc}(p_{Tc}>20 GeV/c, |\eta_c|<1.5)\times BR(W->\ell\nu) = 9.8+/-3.2 pb, in agreement with theoretical expectations.
The measured cross section for leptonic decay of the W.
Inclusive jet cross sections in Z/gamma^* events, with Z/gamma^* decaying into an electron-positron pair, are measured as a function of jet transverse momentum and jet multiplicity in ppbar collisions at sqrt{s} = 1.96 TeV with the upgraded Collider Detector at Fermilab in Run II, based on an integrated luminosity of 1.7 fb^-1. The measurements cover the rapidity region | yjet | < 2.1 and the transverse momentum range ptjet > 30 GeV/c. Next-to-leading order perturbative QCD predictions are in good agreement with the measured cross sections.
Total cross section for .GE.1JET.
Total cross section for .GE.2JET.
Total cross section for .GE.3JET.
By analyzing the data sets of 17.3 pb$^{-1}$ taken at $\sqrt{s}=3.773$ GeV and 6.5 pb$^{-1}$ taken at $\sqrt{s}=3.650$ GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 12 exclusive light hadron final states produced in $e^+e^-$ annihilation at the two energy points. We have also set the upper limits on the observed cross sections and the branching fractions for $\psi(3770)$ decay to these final states at 90% C.L.
Observed cross sections.
We report measurements of the observed cross sections for $e^+e^-\to\omega \pi^+\pi^-$, $\omega K^+K^-$, $\omega p\bar p$, $K^+K^-\rho^0\pi^0$, $K^+K^-\rho^+\pi^-+c.c.$, $K^{*0}K^-\pi^+\pi^0+c.c.$, $K^{*+}K^-\pi^+\pi^-+c.c.$, $\phi\pi^+\pi^-\pi^0$ and $\Lambda \bar \Lambda \pi^0$ at $\sqrt s=$ 3.773 and 3.650 GeV. Upper limits (90% C.L.) are given for observed cross sections and for $\psi(3770)$ decay branching fractions for production of these final states. These measurements are made by analyzing the data sets of 17.3 pb$^{-1}$ collected at $\sqrt{s}=3.773$ GeV and 6.5 pb$^{-1}$ collected at $\sqrt{s}=3.650$ GeV with the BES-II detector at the BEPC collider.
Observed cross sections.
We report a new STAR measurement of the longitudinal double-spin asymmetry A_LL for inclusive jet production at mid-rapidity in polarized p+p collisions at a center-of-mass energy of sqrt(s) = 200 GeV. The data, which cover jet transverse momenta 5 < p_T < 30 GeV/c, are substantially more precise than previous measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit of polarized deep-inelastic scattering measurements.
(a) The raw detected jet yield in data (points) compared with the STAR Monte Carlo simulations. (b) Correlation between the reconstructed jet transverse momenta at the particle and detector levels. The points indicate the means and the vertical error bars show the r.m.s. widths of the associated particle jet distributions within the detector jet bins. The dashed line represents the condition when the particle and detector jet $p_{T}$ values are equal.
(a) The raw detected jet yield in data (points) compared with the STAR Monte Carlo simulations. (b) Correlation between the reconstructed jet transverse momenta at the particle and detector levels. The points indicate the means and the vertical error bars show the r.m.s. widths of the associated particle jet distributions within the detector jet bins. The dashed line represents the condition when the particle and detector jet $p_{T}$ values are equal.
Longitudinal double-spin asymmetry $A_{LL}$ for inclusive jet production at $\sqrt{s_{NN}}$ = 200 GeV versus jet $p_{T}$. The points show results for particle jets with statistical error bars, while the curves show predictions for NLO parton jets from one global analysis [14]. The gray boxes indicate the systematic uncertainties on the measured $A_{LL}$ values (vertical) and in the corrections to the measured jet $p_{T}$ and the conversion between particle jet and NLO parton jet $p_{T}$ (horizontal).
We present measurements of the process $p\bar{p} \to WZ+X \to \ell^{\prime} \nu_{\ell^{\prime}} \ell \bar{\ell}$ at $\sqrt{s}=1.96$ TeV, where $\ell$ and $\ell^{\prime}$ are electrons or muons. Using 1 fb$^{-1}$ of data from the D0 experiment, we observe 13 candidates with an expected background of $4.5\pm0.6$ events and measure a cross section $\sigma(WZ)=2.7^{+1.7}_{-1.3}$ pb. From the number of observed events and the $Z$ boson transverse momentum distribution, we limit the trilinear $WWZ$ gauge couplings to $-0.17 \le \lambda_Z \le 0.21$ $(\Delta \kappa_Z = 0)$ at the 95% C.L. for a form factor scale $\Lambda=2$ TeV. Further, assuming that $\Delta g^Z_1 = \Delta\kappa_Z$, we find $-0.12 \le \Delta\kappa_Z \le 0.29$ $(\lambda_Z=0)$ at the 95% C.L. These are the most restrictive limits on the $WWZ$ couplings available to date.
Measured WZ cross section.
The inclusive production cross sections of the charmed mesons D^0, D^+, D_s^+ and D^{*+} have been measured in interactions of 920 GeV protons on C, Ti, and W targets with the HERA-B detector at the HERA storage ring. Differential cross sections as a function of transverse momentum and Feynman's x variable are given for the central rapidity region and for transverse momenta up to $\pT=3.5$ GeV/$c$. The atomic mass number dependence and the leading to non-leading particle production asymmetries are presented as well.
Cross sections (micro barns) in the visible range (-0.15<x_F<0.05).
Cross sections (micro barns) extrapolated to the total phase space.
Cross sections(micro barns) for particles production in the visible range (-0.15<x_F<0.05).
We have searched for exclusive 2-photon production in proton-antiproton collisions at sqrt{s} = 1.96 TeV, using 532/pb of integrated luminosity taken by the Run II Collider Detector at Fermilab. The event signature requires two electromagnetic showers, each with transverse energy E_T > 5 GeV and pseudorapidity |eta|<1.0, with no other particles detected in the event. Three candidate events are observed. We discuss the consistency of the three events with gamma-gamma, pi0-pi0, or eta-eta production. The probability that other processes fluctuate to 3 events or more is 1.7x10^-4. An upper limit on the cross section of p+pbar --> p+gamma-gamma+pbar is set at 410 fb with 95% confidence level.
Upper limit on the cross section.