We have measured the differential cross section for small angle p−p scattering from 25 to 200 GeV incident energy and in the momentum transfer range 0.015<|t|<0.080 (GeVc)2. We find that the slope of the forward diffraction peak, b(s), increases with energy and can be fitted by the form b(s)=b0+2α′ lns, where b0=8.3±1.3 and α′=0.28±0.13 (GeVc)−2. Such dependence is compatible with the data existing both at higher and lower energies. We have also obtained the energy dependence of the p−p total cross section in the energy range from 48 to 196 GeV. Within our errors which are ± 1.1 mb the total cross section remains constant.
No description provided.
THE TOTAL CROSS SECTION IS NORMALIZED TO 38.5 +- 0.1 MB AT 48 GEV. IT HAS BEEN DERIVED USING THE OPTICAL THEOREM FROM THE EXTRAPOLATED FORWARD ELASTIC CROSS SECTION AND WITH ALPHA = -0.09.
Angular distributions of proton-proton elastic scattering have been measured for incident beam momenta of 10.0, 12.0, 14.2 and 24.0 GeV/ c over a range of lab scattering angles from 12 to 152 mrad. This is equivalent to a range of four-momentum transfer squared from about 0.1 to 6.7 GeV 2 at the highest momentum. Nucleon resonance production in the two-body reaction p + p → p + X has been studied at 24.0 GeV/ c incident momentum from 13.5 to 112 mrad by measuring the proton momentum spectra from the elastic peak down to a momentum corresponding to a missing mass of about 2.6 GeV. The new data are compared with previous results and theoretical models.
ESTIMATED 8 PCT RANDOM ERROR.
ESTIMATED 8 PCT RANDOM ERROR.
ESTIMATED 8 PCT RANDOM ERROR.
From 2728 events of 205-GeV pp interactions found in 15 000 pictures taken with the 30-in. hydrogen bubble chamber at the National Accelerator Laboratory, a total cross section of 39.5±1.1 mb was measured. The mean charged-particle multiplicity for inelastic pp collisions was measured to be 7.65±0.17. The prong distribution from 2 to 22 prongs is broader than a Poisson distribution and has a width parameter f2−=〈n−(n−−1)〉−〈n−〉2=0.95±0.21.
No description provided.
The reaction π−+p→π−+p has been studied in the 15-in. bubble chamber at the Princeton-Pennsylvania Accelerator. The elastic scattering cross section was determined to be 8.5 ± 0.2 mb. The forward peak fits to an exponential in t with a slope of 8.1 ± 0.2 (GeV/c)−2. The forward differential cross section dσdΩ(0)=17.9±0.7 mb/sr. A fit of the center-of-mass angular distribution to Legendre polynomials needed terms up to the 12th order, corresponding to the highest nonzero partial wave of L=6.
No description provided.
FORWARD D(SIG)/DOMEGA IS 17.9 +- 0.7 MB/SR. SLOPE IS 8.1 +- 0.2 GEV**-2 (-T = 0.1 TO 0.4 GEV**2).
OTHER 2.27 GEV/C DATA ALSO QUOTED.
Reactions p p → p p and p p → n n were studied at the kinetic energy 230 MeV of incident p by using bubble chamber films. Total cross sections for both of the reactions were found to be 51.2 ± 1.6 mb and 9.1 ± 0.6 mb, respectively. Differential cross sections are well explained by the phenomenological theory given by Bryan and Phillips.
No description provided.
No description provided.
No description provided.
Differential cross sections and density matrix elements are presented for K ∗− (890) and K ∗− (1400) produced in the reaction K − p→K O π − p at 3.95 GeV/ c . The cross sections are decomposed into contributions due to different exchange mechanisms.
No description provided.
No description provided.
No description provided.
From a 3.5 ev/μb exposure of the BNL 80 inch chamber filled with deuterium to a 7.0 GeV/ c p beam we obtained 664 events in the channel p n → p π − p . The channel cross section is (1270 ± 110 60 ) μb. The final state is dominated by Δ (1230) production. The experimental data is well described by a one-pion exchange model with off-mass shell corrections.
No description provided.
A study is made of η 0 production in p p → 3π + 3π − π 0 (7500 events) at an incident momentum of 720 MeV/ c . The reaction is dominated by production of ω 0 (≈68 o/o). The η o production has been studied by means of two independent methods: the first, a study of correlations between the (4 π ) ± and (5 π ) 0 and the (3 π ) 0 systems, circumvents the problem of ω 0 reflections. The second attempts to isolate the η 0 4π channel by means of rigorous selections using the decay properties of η 0 and ω 0 . The results of the two methods are consistent and confirnm the production of σ +- , D 0 and E 0 with the decays ifD 0 → σ ± π ± → η 0 π + π ( su −), E 0 → σ ± π ∓ → η ( su 0) π + π − , E 0 → η 0 π + π − .
CORRECTED FOR UNOBSERVED ETA DECAYS AND I=0 ASSUMED FOR ETAPRIME, D(1285) AND E(1420) --> ETA PI0 PI0.
The reaction K − d → K − π + π − n p s was studied in a bubble chamber experiment. The cross section was measured to be 1.3 ± 0.2 mb. The final state is dominated by K ∗0 (890) , K ∗0 (1420) and Δ − (1236) production. Partial cross sections, differential cross sections and decay angular distributions of the K ∗0 (890) δ − (1236) final state were found to give good agreement with the predictions of Białas and Zalewski obtained from the quark model. The final state K − π + Δ − (1236) is analyzed by use of the Van Hove plot.
DEUTERIUM CROSS SECTIONS WITH SPECTATOR PROTON. PROBABLY NOT CORRECTED FOR K* BRANCHING RATIO INTO <K- PI+>.
SLOPE IS 5.75 +- 0.46 GEV**2 FOR -TP < 0.4 GEV**2.
GOTTFRIED-JACKSON FRAME.
We present results on the differential cross sections for the process K + n → K 0 p extracted from the reaction K + d → K 0 pp measured at 13 momenta between 0.64 and 1.51 GeV/ c .
THESE TOTAL CROSS SECTIONS WERE PRESENTED WITH MORE EXPERIMENTAL DETAILS IN G. GIACOMELLI ET AL., NP B37, 577 (1972).
REACTION HAS A SPECTATOR PROTON. THESE ARE NOT FREE NEUTRON CROSS SECTIONS. A 250 MEV/C MOMENTUM CUT IS APPLIED TO THE SPECTATOR MOMENTUM AND D(SIG)/DOMEGA THEN NORMALIZED TO THE UNCUT TOTAL CROSS SECTION FOR K+ DEUT --> K0 P P.