Surprisingly large polarizations in hyperon production by unpolarized protons have been known for a long time. The spin dynamics of the production process can be further investigated with polarized beams. Recently, a negative asymmetry AN was found in inclusive Λ0 production with a 200GeV/c transversely polarized proton beam. The depolarization DNN in p↑+p→Λ0+X has been measured with the same beam over a wide xF range and at moderate pT. DNN reaches positive values of about 30% at high xF and pT∼1.0GeV/c. This result shows a sizable spin transfer from the incident polarized proton to the outgoing Λ0.
Errors are statistical only. The systematic errors are estimated to be negligible.
Errors are statistical only. The systematic errors are estimated to be negligible.
Errors are statistical only. The systematic errors are estimated to be negligible.
Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of $x$ and $Q^2$ using the ZEUS detector. The evolution of the scaled momentum, $x_p$, with $Q^2,$ in the range 10 to 1280 $GeV^2$, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of $Q^2$.
No description provided.
No description provided.
No description provided.
This paper presents the first analysis of diffractive photon dissociation events in deep inelastic positron-proton scattering at HERA in which the proton in the final state is detected and its momentum measured. The events are selected by requiring a scattered proton in the ZEUS leading proton spectrometer (LPS) with $\xl>0.97$, where $\xl$ is the fraction of the incoming proton beam momentum carried by the scattered proton. The use of the LPS significantly reduces the contamination from events with diffractive dissociation of the proton into low mass states and allows a direct measurement of $t$, the square of the four-momentum exchanged at the proton vertex. The dependence of the cross section on $t$ is measured in the interval $0.073<|t|<0.4$~$\gevtwo$ and is found to be described by an exponential shape with the slope parameter $b=\tslopeerr$. The diffractive structure function $\ftwodfour$ is presented as a function of $\xpom \simeq 1-\xl$ and $\beta$, the momentum fraction of the struck quark with respect to $\xpom$, and averaged over the $t$ interval $0.073<|t|<\ftwodfourtmax$~$\gevtwo$ and the photon virtuality range $5<Q^2<20~\gevtwo$. In the kinematic range $4 \times 10^{-4} < \xpom < 0.03$ and $0.015<\beta<0.5$, the $\xpom$ dependence of $\ftwodfour$ is fitted with a form $\xpoma$, yielding $a= \ftwodfouraerr$. Upon integration over $t$, the structure function $\ftwod$ is determined in a kinematic range extending to higher $\xpom$ and lower $\beta$ compared to our previous analysis; the results are discussed within the framework of Regge theory.
The measured distribution of T, the squared momentum transfer to the virtual pluton.
Slope of the T distribution.
The structure function F2(NAME=D4).
The data collected by DELPHI in 1996 have been used to measure the average charged particle multiplicities and dispersions in q q ̄ events at centre-of-mass energies of s =161 GeV and s =172 GeV, and the average charge multiplicity in WW events at s =172 GeV. The multiplicities in q q ̄ events are consistent with the evolution predicted by QCD. The dispersions in the multiplicity distributions are consistent with Koba-Nielsen-Olesen (KNO) scaling. The average multiplicity of charged particles in hadronic W decays has been measured for the first time; its value, 19.23±0.74(stat+syst), is consistent with that expected for an e + e − interaction at a centre-of-mass energy equal to the W mass. The charged particle multiplicity in W decays shows no evidence of effects of colour reconnection between partons from different W's at the present level of statistics.
No description provided.
No description provided.
No description provided.
We present a measurement of the inelastic, non diffractive J/$\psi$ photoproduction cross section in the reaction $e^{+} p \to e^{+} {J}/\psi X$ with the ZEUS detector at HERA. The J/$\psi$ was identified using both the $\mu^{+}\mu^{-}$ and $e^{+}e^{-}$ decay channels and events were selected within the range $0.4<z<0.9$ ($0.5<z<0.9$) for the muon (electron) decay mode, where $z$ is the fraction of the photon energy carried by the J/$\psi$ in the proton rest frame. The cross section, the $p^2_T$ and the $z$ distributions, after having subtracted the contributions from resolved photon and diffractive proton dissociative processes, are given for the photon-proton centre of mass energy range $50<W<180$ GeV; $p^2_T$ is the square of the J/$\psi$ transverse momentum with respect to the incoming proton beam direction. In the kinematic range $0.4 < z < 0.9$ and $p^2_T > 1$ GeV$^2$, NLO calculations of the photon-gluon fusion process based on the colour-singlet model are in good agreement with the data. The predictions of a specific leading order colour-octet model, as formulated to describe the CDF data on J/$\psi$ hadroproduction, are not consistent with the data.
Cross section for the MU+ MU- decay channel.
Cross section for the MU+ MU- decay channel.
Cross section for the MU+ MU- decay channel.
The transverse, longitudinal and asymmetric components of the fragmentation function are measured from the inclusive charged particles produced in$e^+e^-$collisi
Transverse component of the differential cross section.
Longitudinal component of the differential cross section.
Asymmetric component of the differential cross section.
We present experimental results on measuring a single spin asymmetry in η-meson production in the interaction of transversely polarized protons and antiprotons at p lab = 200 GeV / c with a proton target in the region 0.2 < x F < 0.7 for p ↑ p , 0.3 < x F < 0.7 for p ̄ ↑p and 0.7 < p T < 2.0 GeV / c . A comparison of single spin asymmetries in π- and η-meson production is made.
The true asymmetry for ETA production in proton-proton collisions.
The true asymmetry for ETA production in antiproton-proton collisions.
A small electromagnetic sampling calorimeter, installed in the ZEUS experiment in 1995, significantly enhanced the acceptance for very low x and low Q^2 inelastic neutral current scattering, e^{+}p \to e^{+}X, at HERA. A measurement of the proton structure function F_2 and the total virtual photon-proton (\gamma^*p) cross-section is presented for 0.11 \le Q^{2} \le 0.65 GeV^2 and 2 \times 10^{-6} \le x \le 6 \times 10^{-5}, corresponding to a range in the \gamma^{*}p c.m. energy of 100 \le W \le 230 GeV. Comparisons with various models are also presented.
Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.
Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.
Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.
This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel $D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ $ (+ c.c.) has been used in the study. The $e^+p$ cross section for inclusive D^{*\pm} production with $5<Q^2<100 GeV^2$ and $y<0.7$ is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {$1.3<p_T(D^{*\pm})<9.0$ GeV and $| \eta(D^{*\pm}) |<1.5$}. Differential cross sections as functions of p_T(D^{*\pm}), $\eta(D^{*\pm}), W$ and $Q^2$ are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and $\eta$(D^{*\pm}), the charm contribution $F_2^{c\bar{c}}(x,Q^2)$ to the proton structure function is determined for Bjorken $x$ between 2 $\cdot$ 10$^{-4}$ and 5 $\cdot$ 10$^{-3}$.
No description provided.
Integrated charm cross sections in two Q**2 regions.
Distribution of the fractional momentum of the D* in the gamma*-p system.
The spin density matrix elements for the ϱ 0 , K ∗0 (892) and F produced in hadronic Z 0 decays are measured in the DELPHI detector. There is no evidence for spin alignment of the K ∗0 (892) and F in the region x p ≤ 0.3 ( x p = p p beam ), where ϱ 00 = 0.33 ± 0.05 and ϱ 00 = 0.30 ± 0.04, respectively. In the fragmentation region, x p ≥ 0.4, there is some indication for spin alignment of the ϱ 0 and K ∗0 (892), since ϱ 00 = 0.43 ± 0.05 and ϱ 00 = 0.46 ± 0.08, respectively. These values are compared with those found in meson-induced hadronic reactions. For the F, ϱ 00 = 0.30 ± 0.04 for x p ≥ 0.4 and 0.55 ± 0.10 for x p ≥ 0.7. The off-diagonal spin density matrix element ϱ 1-1 is consistent with zero in all cases.
Helicity density matrices elements. The statistical and systematic errors are combined quadratically.
Helicity density matrices elements. The statistical and systematic errors are combined quadratically.
Helicity density matrices elements. The statistical and systematic errors are combined quadratically.